

trimetallic framework. The present work is also the first demonstration that the unsaturation inherent to the perpendicular mode is not a formalism but is effectively substantiated by chemical reactivity.

Acknowledgment. Financial support of this work by the CNRS is gratefully acknowledged.

Supplementary Material Available: A description of the experimental details for the X-ray structure analysis of complex 2 and tables of crystallographic data, refined atomic coordinates and hydrogen coordinates, anisotropic thermal parameters, interatomic distances, and bond angles (11 pages); a listing of observed and calculated structure factor amplitudes (31 pages). Ordering information is given on any current masthead page.

Laboratoire de Chimie de Coordination du CNRS associé à l'Université Paul Sabatier et à

L'Institut National Polytechnique 205, route de Narbonne 31077 Toulouse, France

Soa Rivomanana Guy Lavigne\* Noël Lugan Jean-Jacques Bonnet

Received July 19, 1991

# Articles

Contribution from Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011

# Catalytic Oxidation of the (Hydroxymethyl)chromium(III) Ion by the Superoxochromium(III) Ion

Susannah L. Scott, Andreja Bakac,\* and James H. Espenson\*

Received July 10, 1991

The superoxochromium(III) ion,  $CrO_2^{2+}$ , is an efficient catalyst for autoxidation of the (hydroxymethyl)chromium(III) ion,  $CrCH_2OH^{2+}$ , in aqueous solution. The reaction involves one-electron oxidation of  $CrCH_2OH^{2+}$  by  $CrO_2^{2+}$ , k = 137 M<sup>-1</sup> s<sup>-1</sup>, to yield  $Cr^{2+}$ ,  $CH_2O$ , and the novel (hydroperoxo)chromium(III) ion,  $CrO_2H^{2+}$ . The  $Cr^{2+}$  produced reacts rapidly with  $O_2$  to regenerate the catalyst,  $CrO_2^{2+}$ . When oxygen is depleted, the  $Cr^{2+}$  reacts instead with  $CrO_2^{2+}$  to produce the chromyl(IV) ion,  $CrO^{2+}$ . This initiates a chain reaction that rapidly consumes the remaining  $CrO_2^{2+}$  and a stoichiometric amount of  $CrCH_2OH^{2+}$ .

## Introduction

Molecular oxygen is a powerful oxidant if not always a rapid one. Recent studies of the complexes formed between metal ions and molecular oxygen<sup>1</sup> have shown that coordination and partial reduction activate molecular oxygen toward many organic and inorganic substrates. Such reactions, important both industrially and biologically, involve a number of intermediates, whose lifetime and reactivity depend dramatically on the metal and ligands. Macrocycles, especially porphyrins, have a strong stabilizing effect on such intermediates, and the literature abounds with examples of metal-porphyrin complexes containing oxygen in the superoxo, peroxo, or oxo forms and the metal in any of a number of unusual oxidation states.<sup>2</sup>

Much less information is available on similar chemistry in non-porphyrin systems, especially in aqueous solution, mostly because the intermediates involved are usually too short-lived to be observed directly. With a few exceptions, 1.3-5 the work reported in this area deals almost exclusively with oxygen-carrying properties of metal-oxygen adducts,<sup>1,6</sup> not with mechanistic studies of their electron-transfer chemistry.

The reaction of  $Cr^{2+}$  with  $O_2$  yields a long-lived superoxochromium(III) ion,<sup>7</sup>  $CrO_2^{2+}$  (eq 1; here and elsewhere the co-

$$Cr^{2+} + O_2 \rightleftharpoons CrO_2^{2+} \tag{1}$$

ordinated water molecules are omitted).  $CrO_2^{2+}$  has been identified and characterized as a complex of chromium(III) with superoxide.<sup>5</sup> Unlike most of the other transition-metal-oxygen adducts,  $CrO_2^{2+}$  can be handled at room temperature even under air-free conditions, since the reverse reaction is so slow,  $k_{-1} = 2.5$  $\times 10^{-4}$  s<sup>-1.5</sup> This makes it possible to study its chemistry without

 (a) Ilan, Y. A.; Czapski, G.; Ardon, M. Isr. J. Chem. 1975, 13, 15. (b)
 Sellers, R. M.; Simic, M. G. J. Am. Chem. Soc. 1976, 98, 6145. (7)

<sup>(1) (</sup>a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981. (b) Bailey, C. L.; Drago, R. S. Coord. Chem. Rev. 1987, 79, 321. (c) Martell, A. E., Sawyer, D. T., Eds. Oxygen Complexes and Oxygen Activation by Transition Metals; Plenum: New York, 1988. (d) Spiro, T. G., Ed. Metal Ion Activation of Dioxygen; Wiley: New York, 1980. (c) Niederhoffer, E. C.; Timmons, J. H.; Martell, A. E. Chem. Rev. 1984, 84, 137. (f) Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79, 140.

<sup>(2)</sup> For example: (a) Balch, A. L.; Hart, R. L.; Latos-Grazynski, L.; Traylor, T. G. J. Am. Chem. Soc. 1990, 112, 7382. (b) Burstyn, J. N.; Roe, J. A.; Miksztal, A. R.; Shaevitz, B. A.; Lang, G.; Valentine, J. S. J. Am. Chem. Soc. 1988, 1/0, 1382. (c) Nanthakumar, A.; Goff, H.
 M. Inorg. Chem. 1989, 28, 4559. (d) Murata, K.; Panicucci, R.;
 Gopinath, E.; Bruice, T. C. J. Am. Chem. Soc. 1990, 112, 6072. (e) Gojnath, E.; Bruice, T. C. J. Am. Chem. Soc. 1990, 112, 6012. (e)
 Smith, J. R. L.; Balasubramanian, P. N.; Bruice, T. C. J. Am. Chem.
 Soc. 1988, 110, 7411. (f) Tsang, P. K. S.; Sawyer, D. T. Inorg. Chem.
 1990, 29, 2848. (g) Woolery, G. L.; Walters, M. A.; Suslick, K. S.;
 Powers, L. S.; Spiro, T. G. J. Am. Chem. Soc. 1985, 107, 2370. (h)
 Schappacher, M.; Weiss, R.; Montiel-Montoya, R.; Trautwein, A.;
 Tabard, A. J. Am. Chem. Soc. 1985, 108, 3736. (i) Chin, D.-H.;
 Gaudio, J. D.; La Mar, G. N.; Balch, A. L. J. Am. Chem. Soc. 1977, 00 99, 5486 and references therein.

<sup>(3) (</sup>a) Wong, C.-L.; Switzer, J. A.; Balakrishnan, K. P.; Endicott, J. F. J. Am. Chem. Soc. 1980, 102, 5511. (b) Wong, C.-L.; Endicott, J. F. Inorg. Chem. 1981, 20, 2233. (c) Kumar, K.; Endicott, J. F. Inorg. Chem. 1984, 23, 2447. (d) Endicott, J. F.; Kumar, K. Mechanistic Aspects of Inorganic Reactions; ACS Symposium Series 198; American Chemical Society: Washington, DC, 1982; p 425.
(4) Gubelmann, M. H.; Ruttimann, S.; Bocquet, B.; Williams, A. F. Helv.

Gubelmann, M. H.; Ruttimann, S.; Bocquet, B.; Williams, A. F. Helv. Chim. Acta 1990, 73, 1219.
 (a) Brynildson, M. E.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1987, 109, 4579. (b) Bruhn, S. L.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1986, 25, 535. (c) Brynildson, M. E.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1988, 27, 2592 and references therein.
 (a) Herron, N.; Busch, D. H. J. Am. Chem. Soc. 1981, 103, 1236; (b) Herron N.; Busch, D. H. J. Am. Chem. Soc.

Herron, N.; Cameron, J. H.; Neer, G. L.; Busch, D. H. J. Am. Chem. Soc. 1983, 105, 298. (c) Goldsby, K. A.; Beato, B. D.; Busch, D. H. Inorg. Chem. 1986, 25, 2342.

interference from free  $O_2$  and in the absence of rapid oxygen binding/release equilibria. The thermal decomposition of  $CrO_2^{2+}$ and its reactions with inorganic reductants such as hydrazine,  $Ru(NH_3)_6^{2+}$ ,  $Co(sep)^{2+}$ ,  $V^{2+}$ ,  $Fe^{2+}$ , etc. have been studied.<sup>5</sup> On the basis of the kinetic and spectral evidence obtained in that early work, it was proposed that one-electron outer-sphere reduction of  $CrO_2^{2+}$  yields a long-lived (hydroperoxo)chromium(III) ion,  $CrO_2H^{2+}$ , which could not, however, be characterized owing to the extremely low concentrations of its immediate precursor,  $CrO_2^{2+}$ , available to us at that time (typically <40  $\mu$ M).

In this paper, we report kinetic results for the autoxidation of  $CrCH_2OH^{2+}$ , consisting of an uncatalyzed path and a path catalyzed by  $CrO_2^{2+}$ . We present a mechanistic interepretation for the catalysis and conclusive evidence for the formation of CrO<sub>2</sub>H<sup>2+</sup> as a product at millimolar concentrations.

We also report an improved method for the preparation of CrO<sub>2</sub><sup>2+</sup>. This procedure permits 10-fold higher concentrations of the desired product (up to 0.5 mM) than was previously possible, with no undesirable chromium side products. Also, the presence of alcohols in the reaction medium stabilizes  $CrO_2^{2+}$  toward spontaneous decomposition in aerated solutions.

#### **Experimental Section**

Dilute solutions ( $\leq 40 \ \mu$ M) of CrO<sub>2</sub><sup>2+</sup> were initially prepared by injecting Cr2+ into 0.1 M aqueous HClO4 saturated with O2, as described previously.5 Higher concentrations could not be prepared in this way, because the yield of  $CrO_2^{2+}$  decreases and those of chromium(III) and HCrO<sub>4</sub><sup>-</sup> increase as the total concentration of chromium increases.<sup>5</sup> As described later in greater detail, it was found that much higher concentrations of  $CrO_2^{2+}$  can be prepared by essentially the same method, provided the solution contains a small amount of an alcohol. Later preparations typically used 0.1-1 M CH<sub>3</sub>OH. Concentrations of CrO<sub>2</sub><sup>2+</sup> were determined spectrophotometrically ( $\lambda_{max}$  290 nm,  $\epsilon$  3.1 × 10<sup>3</sup> M<sup>-1</sup> cm<sup>-1</sup>;  $\lambda_{max}$  245 nm,  $\epsilon$  7.4 × 10<sup>3</sup> M<sup>-1</sup> cm<sup>-1</sup>).<sup>3,7</sup>

The (hydroxymethyl)chromium ion, CrCH<sub>2</sub>OH<sup>2+</sup>, was prepared in solution<sup>8</sup> and standardized spectrophotometrically ( $\lambda_{max}$  392 nm,  $\epsilon$  570  $M^{-1}$  cm<sup>-1</sup>;  $\lambda_{max}$  282 nm,  $\epsilon 2.4 \times 10^3$   $M^{-1}$  cm<sup>-1</sup>).<sup>8,9</sup> In several cases the complex was purified by ion exchange on Sephadex SP C-25. The behaviors of the purified and unpurified complexes were identical in all of the reactions studied, and in most preparations the ion-exchange step was omitted. The deuterated complex CrCD2OD2+ was prepared by the same method as CrCH<sub>2</sub>OH<sup>2+</sup>, except that D<sub>2</sub>O and CD<sub>3</sub>OD were substituted for H<sub>2</sub>O and CH<sub>3</sub>OH. The preparation of CrCD<sub>2</sub>OH<sup>2+</sup> used H<sub>2</sub>O and CD<sub>1</sub>OD.

 $[Co(NH_3)_5F](ClO_4)_2$  was prepared from  $[Co(NH_3)_5F](NO_3)_2^{10}$  and HClO<sub>4</sub>. Solutions of  $Co(NH_3)_5F^{2+}$  were prepared daily. Dilute solutions of  $H_2O_2$  were prepared and standardized by  $I^-/S_2O_3^{2-}$  titration daily. Alcohols were purchased from commercial suppliers and used as received.

Spectrophotometric titration curves and kinetic traces were obtained by measuring the change in absorbance at 290 nm, using a Cary 219 UV-visible spectrophotometer equipped with an internal timer and a thermostatted cell holder. At 290 nm, both CrO22+ and CrCH2OH2+ contribute to the total absorbance. All reagents except CrCH<sub>2</sub>OH<sup>2+</sup> were mixed in a spectrophotometer cell capped with a septum and saturated with either oxygen or argon. Air-free CrCH<sub>2</sub>OH<sup>2+</sup> was added by syringe to commence the reaction. For the determination of the kinetic isotope effect in the catalyzed autoxidation of CrCH<sub>2</sub>OH<sup>2+</sup>, the kinetics were also determined on  $CrCD_2OD^{2+}$  in  $D_2O$  and  $CrCD_2OH^{2+}$  in  $H_2O$ . The total deuterium content in the former system was >96%. All the kinetic experiments were performed at  $25.0 \pm 0.1$  °C. Pseudo-first-order rate constants were obtained graphically as the negative of the slope of  $\ln (A_i)$  $-A_{\infty}$ ) versus time or as a parameter from the nonlinear least-squares fit to a single-exponential rate law. Oxygen concentrations were measured with a dissolved-oxygen electrode from Hach Chemical Co.

Inorganic products were identified and their concentrations determined spectrophotometrically. Oxidizing titer was evaluated by deaerating the product solution with argon and then adding an excess of solid sodium iodide. The absorbance at 350 nm due to triiodide ( $\epsilon 2.5 \times 10^4 \text{ M}^{-1}$ cm<sup>-1</sup>)<sup>11</sup> was measured to determine the concentration of iodine in solution. Formaldehyde was determined by chromotropic acid analysis.<sup>12</sup>



Figure 1. Kinetic trace at 290 nm for the reaction between CrCH<sub>2</sub>OH<sup>2+</sup> and  $CrO_2^{2+}$  in the presence of a limiting amount of O<sub>2</sub>. Experimental conditions: 0.10 mM CrO22+, 0.42 mM CrCH2OH2+, 0.2 M CH3OH, 0.10 M HClO<sub>4</sub>, 0.34 mM 0<sub>2</sub>, optical path length 1 cm.



Figure 2. Kinetic trace at 290 nm for the reaction between CrCH<sub>2</sub>OH<sup>2+</sup> and  $CrO_2^{2+}$  in the absence of O<sub>2</sub>. Experimental conditions: 0.043 mM  $CrO_2^{2+}$ , 0.098 mM  $CrCH_2OH^{2+}$ , 0.02 M  $CH_3OH$ , 0.013 M  $HClO_4$ , optical path length 2 cm.

#### Results

Qualitative Observations. The reaction between CrCH<sub>2</sub>OH<sup>2+</sup> and  $CrO_2^{2+}$  in the presence of excess  $O_2$  was accompanied by an exponential decrease in absorbance at 290 nm. When O<sub>2</sub> was not in excess, the reaction profile showed a dramatic break (Figure 1). In the absence of  $O_2$ , the reaction was fast and autocatalytic (Figure 2).

Effect of CH<sub>3</sub>OH on Yield and Stability of CrO<sub>2</sub><sup>2+</sup>. As already noted in earlier work,<sup>5</sup> the reaction of  $Cr^{2+}$  with  $O_2$  in dilute aqueous  $HClO_4$  (0.01–0.1 M) yielded  $CrO_2^{2+}$  quantitatively only at very low concentrations of  $Cr^{2+}$  (<40  $\mu$ M). At higher concentrations, large amounts of Cr(III) and HCrO<sub>4</sub><sup>-</sup> ( $\lambda_{max}$  345 nm,  $\epsilon$  1.44 × 10<sup>3</sup> M<sup>-1</sup> cm<sup>-1</sup>) formed at the expense of CrO<sub>2</sub><sup>2+</sup>. The addition of as little as 0.01 M CH<sub>3</sub>OH to the reaction mixture prior to or immediately after the injection of  $Cr^{2+}$  resulted in greatly improved yields of  $CrO_2^{2+}$ . Up to 0.5 mM  $CrO_2^{2+}$  was prepared in this way, with no contamination by HCrO<sub>4</sub><sup>-</sup>. Other alcohols, such as ethanol and 2-propanol, had the same effect on the yield of  $CrO_2^{2+}$ . In addition, the decomposition of  $CrO_2^{2+}$ was slower in oxygenated solutions that contained the alcohol than in those that did not.

Catalyzed Reaction of CrCH<sub>2</sub>OH<sup>2+</sup> with O<sub>2</sub>. When CrO<sub>2</sub><sup>2+</sup> (0.008-0.12 mM) and CrCH<sub>2</sub>OH<sup>2+</sup> (0.13-0.93 mM) are mixed in the presence of excess O<sub>2</sub> (0.25-1.27 mM), a straightforward catalytic process takes place (eq 2).  $CrO_2^{2+}$  is recovered fully

$$\operatorname{CrCH}_2\operatorname{OH}^{2+} + \operatorname{O}_2 \xrightarrow{\operatorname{CrO}_2^{2+}} \operatorname{CrO}_2\operatorname{H}^{2+} + \operatorname{CH}_2\operatorname{O} \quad k_2 \quad (2)$$

at the end of the reaction, and CH<sub>2</sub>O is produced quantitatively, i.e.,  $[CH_2O]_{\infty} \ge 0.9[CrCH_2OH^{2+}]_0$ . The kinetics obey the first-order rate law of eq 3 to >90% completion. The rate constant  $k_2$  (eq 4) is linearly dependent on [CrO<sub>2</sub><sup>2+</sup>] and independent of

$$-d[CrCH_2OH^{2+}]/dt = k_{obs}[CrCH_2OH^{2+}]$$
(3)

$$k_{\rm obs} = k_0 + k_2 [{\rm CrO}_2^{2+}] \tag{4}$$

 $[O_2]$ ,  $[H^+]$ , and  $[CH_3OH]$ .  $k_2$  increases with increasing ionic

<sup>(</sup>a) Schmidt, W.; Swinehart, J. H.; Taube, H. J. Am. Chem. Soc. 1971, 93, 1117. (b) Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1981, 103, (8) 2721.



Figure 3. Dependence of the pseudo-first-order rate constant for the reaction between  $CrCH_2OH^{2+}$  and  $CrO_2^{2+}$  on the concentration of  $CrO_2^{2+}$ . Experimental conditions: 0.42 mM  $CrCH_2OH^{2+}$ , 0.2 M  $CH_3OH$ , 0.10 M  $HClO_4$ , 0.3-1.2 mM  $O_2$ , 25.0 °C.

strength (HClO<sub>4</sub> + LiClO<sub>4</sub>) at constant [HClO<sub>4</sub>] = 0.10 M. The data in Figure 3 yield  $k_2 = 137 \pm 5 \text{ M}^{-1} \text{ s}^{-1}$  at  $\mu = 0.10 \text{ M}$ . The intercept  $k_0$  is a summation of terms corresponding to the known hydrolysis of CrCH<sub>2</sub>OH<sup>2+ 8,9</sup> and direct autoxidation of CrCH<sub>2</sub>OH<sup>2+</sup>, discovered in this work and described subsequently. As seen in Figure 3, the  $k_0$  term contributes little to the overall rate constant under the experimental conditions.

In one experiment, the change in oxygen concentration was monitored by use of a dissolved-oxygen electrode. The data yielded  $k_2 = 140 \text{ M}^{-1} \text{ s}^{-1}$ , in excellent agreement with the value determined spectrophotometrically.

The value of  $k_2$  is virtually unaffected by deuteration at carbon. For the reaction between  $CrCD_2OH^{2+}$  and  $CrO_2^{2+}$ ,  $k_2 = 122 \text{ M}^{-1}$ s<sup>-1</sup> for a primary isotope effect of  $k_H/k_D = 1.1$ . However, the value of  $k_2$  for the reaction of  $CrCD_2OD^{2+}$  in  $D_2O$  is 76 M<sup>-1</sup> s<sup>-1</sup>, therefore for O-deuteration, the kinetic isotope effect is 1.8.

The reaction of the O-methylated complex,  $CrCH_2OCH_3^{2+}$ , with  $CrO_2^{2+}$  is much slower than the reaction of  $CrCH_2OH^{2+}$ . Also, the first-order plots for the former reaction conducted in the presence of a large excess of  $O_2$  are nonlinear.

The (Hydroperoxo)chromium(III) Ion. The identification of the chromium product as  $CrO_2H^{2+}$  is based on the following evidence. After completion of reaction 2, iodometric analysis of spent solutions confirmed the presence of 2 oxidizing equiv/mol of initial  $CrCH_2OH^{2+}$  in addition to the oxidizing equivalents present due to the catalyst,  $CrO_2^{2+}$ . The reaction of the oxidizing product with iodide under a given set of conditions (0.10 M H<sup>+</sup>, 50 mM I<sup>-</sup>) is complete in a few seconds. The product is thus clearly not free  $H_2O_2$ , whose reaction with iodide was measured under identical conditions and required several hours for completion.

The most convincing evidence for this reaction being an *intact* one-electron reduction product of  $\text{CrO}_2^{2+}$  comes from its reaction with Ce(IV). When 1 equiv of the latter is added to the solution after completion of reaction 2,  $\text{CrO}_2^{2+}$  is produced in a concentration comparable to (~75%) that of  $\text{CrCH}_2\text{OH}^{2+}$  consumed, consistent with eq 5. Some decay of  $\text{CrO}_2\text{H}^{2+}$  takes place on the time scale of the experiment; see later.

$$CrO_2H^{2+} + Ce(IV) \rightarrow CrO_2^{2+} + Ce(III) + H^+$$
 (5)

Independent experiments showed that the stoichiometric reaction of  $\text{CrO}_2^{2+}$  with  $\text{Ru}(\text{NH}_3)_6^{2+}$  also yields  $\text{CrO}_2\text{H}^{2+}$  (eq 6), as proposed previously.<sup>5c</sup> Subsequent reoxidation by Ce(IV) again restores the spectrum of  $\text{CrO}_2^{2+}$ .

$$CrO_2^{2+} + Ru(NH_3)_6^{2+} \xrightarrow{H^+} CrO_2H^{2+} + Ru(NH_3)_6^{3+}$$
 (6)

After reaction 2 is complete, the absorbance in the visible range decreases with a simultaneous loss of the oxidizing titer of the solution. We assign this process to the decomposition of  $CrO_2H^{2+}$ . The final spectrum is that of  $Cr^{3+}$ , although we cannot rule out the presence of some other low-absorbing chromium products. Figure 4 shows the spectrum measured immediately after completion of reaction 2, the final spectrum obtained 1.5 h later, and a difference spectrum of  $CrO_2H^{2+}$ . A complete study of the



Figure 4. (a) Spectra of the reaction mixture recorded immediately after the catalytic reaction (upper line) and 1.5 h later (lower line). (b) Difference between the absorption spectra of  $CrO_2H^{2+}$  and its decomposition products, obtained by subtraction of the spectra in (a). The initial concentrations of reagents were 0.24 mM  $CrCH_2OH^{2+}$ , 0.020 mM  $CrO_2^{2+}$ , 0.16 M HClO<sub>4</sub>, and 0.45 mM O<sub>2</sub>; optical path length was 5 cm.

decomposition and reactivity of  $CrO_2H^{2+}$  will be reported elsewhere.  $^{13}$ 

Uncatalyzed Reaction of CrCH<sub>2</sub>OH<sup>2+</sup> with O<sub>2</sub>. Air-free solutions of CrCH<sub>2</sub>OH<sup>2+</sup> slowly decompose by acid-dependent acidolysis to yield Cr<sup>3+</sup> and CH<sub>3</sub>OH.<sup>8,9</sup> The decomposition of CrCH<sub>2</sub>OH<sup>2+</sup> is strongly accelerated by O<sub>2</sub> and yields formaldehyde. At 0.1 M H<sup>+</sup>, the respective rate constants for decomposition of 0.23 mM CrCH<sub>2</sub>OH<sup>2+</sup> in argon-saturated and O<sub>2</sub>-saturated solutions are  $1 \times 10^{-3}$  and  $8 \times 10^{-3}$  s<sup>-1</sup>. The reaction in the presence of O<sub>2</sub> appears to have a minor autocatalytic component, and the rate constant evaluated at the very end of the reaction was ~10% greater than that obtained from the initial portion of the trace. The final spectrum showed the presence of some CrO<sub>2</sub><sup>2+</sup> ( $\leq 0.06$  mM) among the reaction products. Oxidation of the spent solution by Ce(IV) (eq 5) produced a clean spectrum of 0.16 mM CrO<sub>2</sub><sup>2+</sup>, indicating that CrO<sub>2</sub>H<sup>2+</sup> is a major chromium product. The overall reaction can thus be written as in eq 7.

$$CrCH_2OH^{2+} + O_2 \rightarrow CH_2O + CrO_2H^{2+} (+CrO_2^{2+} + Cr^{3+})$$
(7)

The sum of the concentrations of  $\text{CrO}_2^{2+}$  and  $\text{CrO}_2H^{2+}$ , 0.16 mM, is less than the amount of  $\text{CrCH}_2\text{OH}^{2+}$  initially present, 0.23 mM. The missing chromium is present as Cr(III), formed both by parallel acidolysis of  $\text{CrCH}_2\text{OH}^{2+}$  and by decomposition of  $\text{CrO}_2\text{H}^{2+}$ , which appears to be complete in less than 1 h. Since it requires ~10 min for the completion of  $\text{CrO}_2\text{H}^{2+}$  decomposed before the addition of Ce(IV).

The presence of  $CrO_2^{2+}$  among the reaction products and the established catalytic effect of this species on the reaction of  $CrCH_2OH^{2+}$  with  $O_2$  explain the appearance of the kinetic traces. As the uncatalyzed reaction of eq 7 produces more and more  $CrO_2^{2+}$ , the contribution from the catalytic pathway of eq 2 becomes increasingly important as the reaction nears completion.

In order to determine the rate constant for reaction 7 without complications from the catalytic path, experiments were conducted in the presence of Fe<sup>2+</sup>, a good scavenger for  $\text{CrO}_2^{2+}$ .<sup>5c</sup> Under these conditions,  $\text{CrCH}_2\text{OH}^{2+}$  disappears in two parallel processes, acidolysis<sup>8,9</sup> and reaction 7. All the  $\text{CrO}_2^{2+}$  produced in eq 7 is destroyed rapidly by Fe<sup>2+</sup>. As expected, in the presence of a large excess of Fe<sup>2+</sup>, the disappearance of  $\text{CrCH}_2\text{OH}^{2+}$  followed first-order kinetics cleanly according to the rate law of eq 8. The

$$-d \ln \left[ CrCH_2OH^{2+} \right] / dt = k_0 = k_a + k_{O_2}[O_2]$$
(8)

rate constants  $k_0$  were independent of the concentration of Fe<sup>2+</sup> (1.0-100 mM) and yielded  $k_{O_2} = 5.0 \pm 0.3 \text{ M}^{-1} \text{ s}^{-1}$  in 0.10 M HClO<sub>4</sub> (Figure 5).

The reaction of  $CrCH_2OH^{2+}$  with  $CrO_2^{2+}$  in the absence of  $O_2$  is strikingly different from the reaction in oxygenated solutions.



Figure 5. Dependence of the pseudo-first-order rate constant for the reaction between  $CrCH_2OH^{2+}$  and  $O_2$  on the concentration of  $O_2$ . Experimental conditions: 0.055 mM  $CrCH_2OH^{2+}$ , 0.10 M  $HClO_4$ , 70 mM  $CH_3OH$ , 1 mM  $Fe^{2+}$ , 25.0 °C.

First, the removal of  $O_2$  converts the catalytic system of eq 2 into a noncatalytic one. The stoichiometry of eq 9 was determined

 $CrCH_2OH^{2+} + 2 CrO_2^{2+} \rightarrow CH_2O + Cr(III) \text{ products}$  (9)

by spectrophotometric titration using  $\text{CrO}_2^{2^+}$  as the titrant and by formaldehyde analysis. Both types of experiments were conducted at low concentrations of CH<sub>3</sub>OH (0-0.01 M). In the presence of  $\geq 0.1$  M CH<sub>3</sub>OH, the stoichiometric ratio  $\Delta$ -[CrO<sub>2</sub><sup>2+</sup>]/ $\Delta$ [CrCH<sub>2</sub>OH<sup>2+</sup>] was 4.0, and the yield of CH<sub>2</sub>O was 3 mol/mol of CrCH<sub>2</sub>OH<sup>2+</sup>. Thus the reaction induces the oxidation of methanol (eq 10).

$$CrCH_2OH^{2+} + 4CrO_2^{2+} + 2CH_3OH \rightarrow 3CH_2O + Cr(III) \text{ products (10)}$$

The second effect is kinetic. Reaction 9 is much faster  $(t_{1/2} = 1-2 \text{ s})$  in the absence of  $O_2$  under conditions where  $t_{1/2} = 25-30$  s in its presence. The best way to illustrate the effect of the removal of  $O_2$  is to conduct the catalytic reaction in the presence of a limiting amount of  $O_2$ . The kinetic trace (Figure 1) begins smoothly, as expected for the reaction of eq 2. As soon as  $O_2$  is depleted, the absorbance drops abruptly, signaling that all the  $CrO_2^{2+}$  and an equivalent amount of  $CrCH_2OH^{2+}$  have been consumed suddenly in reaction 9 or 10.

When the air-free reaction between  $CrO_2^{2+}$  and  $CrCH_2OH^{2+}$ was conducted in the presence of 0.04 M  $(NH_3)_5CoF^{2+}$ , a good scavenger for  $Cr^{2+}$ ,<sup>14</sup> the disappearance of  $CrO_2^{2+}$  at 290 nm occurred with a rate constant of 122 M<sup>-1</sup> s<sup>-1</sup>, a value close to that obtained in the catalytic system in the presence of  $O_2$ .

### Discussion

 $CrO_2^{2+}$  is quite an effective catalyst for the oxidation of  $CrCH_2OH^{2+}$  by O<sub>2</sub>. At 0.10 M ionic strength, the rate constants for the catalyzed and uncatalyzed reactions are  $k_2 = 137 \text{ M}^{-1} \text{ s}^{-1}$  and  $k_{O_2} = 5.0 \text{ M}^{-1} \text{ s}^{-1}$ .

A straightforward mechanism for the catalyzed reaction that accommodates all the experimental observations is shown in eqs 11 and 1. The one-electron oxidation of  $CrCH_2OH^{2+}$  by  $CrO_2^{2+}$ 

$$CrCH_2OH^{2+} + CrO_2^{2+} \xrightarrow{k_2} Cr^{2+} + CH_2O + CrO_2H^{2+}$$
 (11)

produces  $Cr^{2+}$  and  $CrO_2H^{2+}$ .  $Cr^{2+}$  then reacts rapidly<sup>7</sup> with  $O_2$ ( $k_1 = 1.6 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ ) to regenerate the catalyst,  $CrO_2^{2+}$ . It is quite reasonable that the reaction of eq 11 should produce chromium in the oxidation state 2+, given that reactions of  $CrCH_2OH^{2+}$  with other oxidants, such as  $Cu^{2+}$ , <sup>8b</sup>  $Fe^{3+}$ , <sup>8b</sup> and  $VO^{2+}$ , <sup>15</sup> also yield  $Cr^{2+}$  as the initial product. Also, the quantitative formation of  $CH_2O$  and  $CrO_2H^{2+}$  confirms the overall stoichiometry of eq 11.

The exact mechanism of reaction 11 is more difficult to ascertain. Two possibilities seem particularly appealing. The first is an outer-sphere reaction, eq 12, which would yield  $CrO_2^+$  and  $CrCH_2OH^{3+}$ . In the rapid subsequent steps, eqs 13 and 14, the reaction of  $CrO_2^+$  with H<sup>+</sup> yields  $CrO_2H^{2+}$ , and  $CrCH_2OH^{3+}$  undergoes a rapid intramolecular electron transfer, producing  $Cr^{2+}$ ,  $CH_2O$ , and  $H^+$ .

$$CrO_2^{2+} + CrCH_2OH^{2+} \rightarrow CrO_2^{+} + CrCH_2OH^{3+}$$
 (12)

$$CrO_2^+ + H^+ \rightleftharpoons CrO_2H^{2+}$$
 (13)

$$CrCH_2OH^{3+} \rightarrow Cr^{2+} + CH_2O + H^+$$
(14)

The reduction potentials and self-exchange rate constants for the two reactants in eq 12 are not known, which rules out a possibility of estimating the expected rate constant for the process. However, both outer-sphere reduction of  $CrO_2^{2+}$  and outer-sphere oxidation of  $CrCH_2OCH_3^{2+}$ , the O-methylated analogue of  $CrCH_2OH^{2+}$ , have been demonstrated before. This, at least in principle, makes reaction 12 feasible. For example, outer-sphere reductants  $Co(sep)^{2+}$ ,  $V^{2+}$ , and  $Ru(NH_3)_6^{2+}$  reduce  $CrO_2^{2+}$  with rate constants in the range  $10^{5-1}0^{6}$  M<sup>-1</sup> s<sup>-1</sup>.<sup>5c</sup> Similarly, Ru-(bpy)\_3<sup>3+</sup> ( $E^{\circ}_{3+/2+} = 1.26$  V)<sup>16</sup> oxidizes  $CrCH_2OCH_3^{2+}$  to  $CrCH_2OCH_3^{3+}$  with a rate constant  $k = 1.0 \times 10^{7}$  M<sup>-1</sup> s<sup>-1</sup>.<sup>17</sup> Subsequent rapid decomposition of  $CrCH_2OCH_3^{3+}$  takes place in a reaction analogous to eq 14 to yield  $Cr^{2+}$ ,  $CH_2O$ , and  $CH_3OH$ .<sup>17</sup> The reduction potential of the  $CrO_2^{2+/+}$  couple<sup>18</sup> is probably much lower than that of  $Ru(bpy)_3^{3+/2+}$ , and the lower reactivity of the former toward  $CrCH_2OH^{2+}$  was to be expected.

Another feasible mechanism for reaction 2 is depicted in eq 15. The attack of  $CrO_2^{2+}$  at the alcohol OH group of  $CrCH_2OH^{2+}$  $CrCH_2OH^{2+} + CrO_2^{2+} \rightarrow$ 

$$[Cr-CH_2OH^{2+} + CrO_2^{2+} \rightarrow Cr^{2+} + CH_2OH^{2+} \rightarrow Cr^{2+} + CH_2O + HO_2Cr^{2+} (15)]$$

results in hydrogen transfer that yields  $CrO_2H^{2+}$ . The other products,  $CH_2O$  and  $Cr^{2+}$ , can be formed either in a concerted manner (eq 15) or by a rapid subsequent decomposition of the transient  $CrCH_2O^{2+}$ .

The mechanism of eq 15 derives some support from the fact that replacement of  $CrCH_2OH^{2+}$  in eq 2 by the O-methylated analogue,  $CrCH_2OCH_3^{2+}$ , results in a slow, kinetically ill-behaved reaction. The presence of the alcohol OH group thus seems to be crucial mechanistically. If the outer-sphere mechanism of eq 12 were to hold, one would expect the two organochromium complexes to behave similarly, since both their reduction potentials and self-exchange rate constants should be comparable.

A hydrogen atom transfer mechanism involving the O-D bond is also consistent with a kinetic isotope effect of  $k_H/k_D > 1$  for CrCD<sub>2</sub>OD<sup>2+</sup>. The observed effect is, however, a composite of the solvent effect, the effect arising from deuteration of H<sub>2</sub>O coordinated to both reactants, and the possible genuine effect arising from hydrogen transfer. The value  $k_H/k_D = 1.8$  is not sufficiently large to draw unequivocal mechanistic conclusions.

The rate constant for the direct autoxidation of  $CrCH_2OH^{2+}$ ,  $k_{O_2} = 5.0 \text{ M}^{-1} \text{ s}^{-1}$ , was determined in the presence of  $Fe^{2+}$  to scavenge any  $CrO_2^{2+}$  produced and thus eliminate a possible contribution from the catalytic pathway of eq 2. However, the rate constants obtained in the presence and absence of  $Fe^{2+}$  were comparable and only a hint of autocatalysis was obtained under the latter conditions. The yield of  $CrO_2^{2+}$  was <25% of total chromium. All of these results indicate that the reaction proceeds by at least two pathways, only one of which produces  $Cr^{2+}$  that appears as  $CrO_2^{2+}$  in oxygen-containing solutions. This reaction might be an outer-sphere process (eq 16) yielding  $Cr^{2+}$ ,  $CH_2O$ ,

$$CrCH_2OH^{2+} + O_2 \rightarrow Cr^{2+} + CH_2O + HO_2$$
(16)

and  $O_2^-$ . The latter would be converted rapidly to HO<sub>2</sub> and disproportionate<sup>19</sup> to O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, or it might oxidize a second molecule or CrCH<sub>2</sub>OH<sup>2+</sup>.

- (17) Melton, J. D.; Espenson, J. H.; Bakac, A. Inorg. Chem. 1986, 25, 4104.
  (18) The potential for the couple ([14]aneN<sub>4</sub>)CoO<sub>2</sub><sup>2+/+</sup> has been estimated<sup>3c</sup> as 0.3 ± 0.1 V. The potential of the CrO<sub>2</sub><sup>2+/+</sup> couple is probably not very different, given that the rate constants for the oxidation of the three reductants by CrO<sub>2</sub><sup>2+ 5c</sup> and ([14]aneN<sub>4</sub>)CoO<sub>2</sub><sup>2+ 3c</sup> are remarkably similar.
- (19) Bielski, B. H. J. Photochem. Photobiol. 1978, 28, 645.

<sup>(14)</sup> Candlin, J. P.; Halpern, J. Inorg. Chem. 1965, 4, 766.

<sup>(15)</sup> Bakac, A.; Espenson, J. H. Inorg. Chem. 1981, 20, 1621.

<sup>(16)</sup> Sutin, N.; Creutz, C. Adv. Chem. Ser. 1978, 168, 1.

Most of the major chromium product, CrO<sub>2</sub>H<sup>2+</sup>, thus had to be formed by a route different from the  $CrO_2^{2+}$ -catalyzed reaction of eq 2. An interesting possibility is a direct attack by  $O_2$  at the substitutionally labile<sup>20</sup> position trans to the CH<sub>2</sub>OH group of the organochromium complex (eq 17) followed by the rapid proton-

$$O_2 + CrCH_2OH^{2+} \rightarrow O_2Cr^+ + CH_2O + H^+$$
 (17)

ation of  $CrO_2^+$ . Attack at the  $CH_2OH$  group that would yield HO<sub>2</sub> directly appears much less likely, since this would in effect by a hydrogen atom abstraction by molecular oxygen.

It has been proposed previously<sup>5</sup> that one-electron reduction of  $CrO_2^{2+}$  yields  $CrO_2H^{2+}$ . However, no direct evidence for this novel species has been obtained prior to this work. The full recovery of the  $CrO_2^{2+}$  spectrum upon oxidation of  $CrO_2H^{2+}$  with 1 equiv of Ce(IV) leaves little doubt about the identity of this species.<sup>21</sup> The spectral features (Figure 4) are as expected for an inorganic, weakly absorbing chromium(III) complex, and the molecule is probably best described as a (hydroperoxo)chromium(III) species. The only uncertainty associated with this species seems to be the level of protonation in the acidity range studied, 0.1-1 M H<sup>+</sup>. Assuming that coordination of Cr<sup>3+</sup> affects the acidity of  $H_2O_2$  to the same extent that it does the acidity of  $H_2O$ (the pK<sub>a</sub> of  $Cr(H_2O)_6^{3+}$  is 4) and taking into account that the pK<sub>a</sub>'s of free  $H_2O(14)$  and  $H_2O_2(11.9)$  differ by only 2 units, one might reasonably expect that both  $CrO_2H^{2+}$  and  $Cr(H_2O_2)^{3+}$  coexist in acidic solutions. Such an expectation is corroborated by the fact that the acidity constants of  $Fe(H_2O)_6^{3+}$  ( $\Rightarrow Fe(H_2O)_5OH^{2+} +$ H<sup>+</sup>; pK<sub>a</sub> 3) and  $(H_2O)_5Fe(H_2O_2)^{3+}$  ( $=(H_2O)_5FeO_2H^{2+} + H^+$ ;  $pK_a$  1.2)<sup>22</sup> differ by less than 2 pK units. We can thus assume with some confidence that the  $pK_a$  of  $Cr(H_2O_2)^{3+}$  is in the range 1-3. However, for the sake of simplicity, the formula  $CrO_2H^{2+}$ is used to represent both forms of the hydroperoxo complex.

To our knowledge  $CrO_2H^{2+}$  is only the second example of an end-bonded (hydroperoxo)metal complex that is long-lived in aqueous solution. The chemistry of the other example, ([14]aneN<sub>4</sub>)CoO<sub>2</sub>H<sup>2+</sup>,<sup>3b,23</sup> has been explored only marginally.

Effect of Alcohols on Yields and Lifetime of  $CrO_2^{2^4}$ . The increased yields of  $CrO_2^{2^+}$  in the reaction between  $Cr^{2^+}$  and excess O2 in the presence of even small amounts of an alcohol ([ROH] < 0.1 M) show clearly that at least one reaction intermediate reacts with alcohols. Even more surprising was the finding that additional  $CrO_2^{2+}$  was found even when the alcohol was added within a few seconds after the mixing of  $Cr^{2+}$  with excess  $O_2$ .

The reaction of  $Cr^{2+}$  and  $O_2$  is known<sup>5,7,24-27</sup> to be a multistep process that involves several intermediates. Only the first one in the sequence, CrO<sub>2</sub><sup>2+</sup>, has been identified directly in the autoxidation of  $Cr^{2+,7}$  Other proposed intermediates are  $CrO_2Cr^{4+}$ , CrOCr<sup>4+</sup>, and CrO<sup>2+</sup>. The first two have been prepared independently,<sup>28,29</sup> but they have not been observed directly in the autoxidation process. The last, CrO<sup>2+</sup>, was proposed<sup>5</sup> to be an extremely short-lived transient that is rapidly reduced by Cr<sup>2+</sup> to dimeric Cr(III). The same species is believed to be an intermediate in the reductions of Cr(VI) by a variety of organic reductants, including alcohols.30

Bakac, A.; Espenson, J. H.; Miller, L. P. Inorg. Chem. 1982, 21, 1557. (20) (21) One reviewer questioned the observation that CrOOH<sup>2+</sup> reacts rapidly with  $I^-$  but does not seem to react with  $Cr^{2+}$  in the proposed catalytic mechanism. The effect is purely a kinetic one:  $Cr^{2+}$  does indeed react with  $CrOOH^{2+}$ , but as with  $H_2O_2$ , the reaction is slow compared to the reaction of  $Cr^{2+}$  with  $O_2$ .

- (a) Lewis, T. J.; Richards, D. H.; Sutter, D. A. J. Chem. Soc. 1963, 2434. (b) Taube, H. Prog. Inorg. Chem. 1986, 34, 607. Geiger, T.; Anson, F. C. J. Am. Chem. Soc. 1981, 103, 7489. (22)
- (24) Piccard, J. Ber. Dtsch. Chem. Ges. 1913, 46, 2477
- (25) Ardon, M.; Plane, R. A. J. Am. Chem. Soc. 1959, 81, 3197.
  (26) Kolaczkowski, R. W.; Plane, R. A. Inorg. Chem. 1964, 3, 322.
  (27) Ardon, M.; Stein, G. J. Chem. Soc. 1956, 2095.

- Adams, A. C.; Crook, J. R.; Bockhoff, F.; King, E. L. J. Am. Chem. Soc. 1968, 90, 5761. (28)
- (29)
- (a) Holwerda, R. A.; Petersen, J. S. Inorg. Chem. 1980, 19, 1775. (b) Johnston, R. F.; Holwerda, R. A. Inorg. Chem. 1985, 24, 3176, 3181.
   For example: (a) Rocek, J.; Westheimer, F. H.; Eschenmoser, A.; Moldovanyi, L.; Schrekber, J. Helv. Chim. Acta 1962, 45, 2554. (b) Rahman, M.; Rocek, J. J. Am. Chem. Soc. 1971, 93, 5455, 5462. (c) (30)Rocek, J.; Radkowsky, A. E. J. Am. Chem. Soc. 1973, 95, 7123.

None of the long-lived oxidizing species (CrO<sub>2</sub><sup>2+</sup>, CrO<sub>2</sub>Cr<sup>4+</sup>, and  $CrOCr^{4+}$ ) react with alcohols. Also,  $HCrO_4^{-}$ , which might be present in small concentrations,<sup>5</sup> is unreactive on these time scales.30

We have recently reported that the reaction of  $Cr^{2+}$  with  $O_2$ leads to formation of the surprisingly long-lived oxochromium(IV) ion,  $CrO^{2+}$  ( $t_{1/2} \sim 40$  s at 25 °C).<sup>31</sup> CrO<sup>2+</sup> reacts with methanol and other alcohols in a two-electron process which yields Cr<sup>2+</sup> as the immediate product. In the presence of excess  $O_2$ ,  $Cr^{2+}$  is trapped and becomes  $CrO_2^{2+}$ . The effect of methanol is therefore to convert  $CrO_2^{2+}$  into  $CrO_2^{2+}$  (Scheme I). A possible source of  $CrO^{2+}$  is the reaction of  $CrO_2^{2+}$  with  $Cr^{2+}$ , a reaction which has been proposed to be extremely fast.<sup>5</sup>

Scheme I

$$CrO_2^{2+} + Cr^{2+} \rightarrow nCrO^{2+} + other Cr products$$
 (18)

$$CrO^{2+} + CH_{3}OH \rightarrow Cr^{2+} + CH_{2}O + 2H^{+}$$
 (19)

$$Cr^{2+} + O_2 \rightarrow CrO_2^{2+}$$
(1)

The decomposition of CrO<sub>2</sub><sup>2+</sup> was shown to involve rate-determining homolysis of the Cr-O bond to produce Cr<sup>2+</sup> and O<sub>2</sub>.<sup>5</sup>  $Cr^{2+}$  either recombines with  $O_2$  or reacts with  $CrO_2^{2+}$ ; the latter process contributes to the net loss of  $CrO_2^{2+}$ . If the product of this reaction is  $CrO^{2+}$ , as proposed above, then  $CH_3OH$  will convert  $CrO^{2+}$  to  $Cr^{2+}$ , which again makes a choice between  $CrO_2^{2+}$  and  $O_2$ . Since the reaction with  $O_2$  regenerates  $CrO_2^{2+}$ , the lifetime of  $CrO_2^{2+}$  increases in the presence of  $CH_3OH$  and  $O_2$ . The corollary is also observed: in the absence of  $O_2$ , CH<sub>3</sub>OH contributes to a decreased lifetime for  $CrO_2^{2+}$  by recycling  $CrO^{2+}$ into  $Cr^{2+}$ , which destroys additional  $CrO_2^{2+}$ .

At this stage of development,<sup>13</sup> eq 18 implies only that the reaction of  $CrO_2^{2+}$  with  $Cr^{2+}$  yields some  $CrO^{2+}$ . The stoichiometry and the mechanism of the reaction have not been established,<sup>13</sup> although it is almost certain that this is not a simple outer-sphere electron transfer. We favor the initial formation of an oxygen-bridged intermediate (or transition state), as proposed previously.<sup>5,24</sup> The intermediate then either cleaves spontaneously or reacts with additional  $Cr^{2+5}$  to yield  $CrO^{2+}$ . If the former path should operate, the intermediate CrO<sub>2</sub>Cr<sup>4+</sup> produced in reaction 18 would have to be an isomer of the known species of the same formula,<sup>28</sup> since the latter does not yield CrO<sup>2+</sup> nor does it react with alcohols.

Although the oxochromium(IV) ion, CrO<sup>2+</sup>, has until now been an elusive species, the long-lived 4+ oxidation state is not unknown in chromium chemistry. The reaction of (TPP)Cr<sup>III</sup> (TPP = dianion of tetraphenylporphyrin) with O<sub>2</sub> in toluene has been reported<sup>32</sup> to yield a stable chromyl complex that has been characterized crystallographically. Alternative routes to this and other chromyl porphyrin complexes have since been reported.33-35 Other stable chromium(IV) compounds include tetraalkoxides, tetraalkyls, and tetrakis(dialkylamides).<sup>36</sup> Also, diperoxochromium(IV) complexes are quite stable in aqueous solution<sup>37</sup> and a transient chelated chromium(IV) has recently been observed.38

The reaction of CrCH<sub>2</sub>OH<sup>2+</sup> with CrO<sub>2</sub><sup>2+</sup> in the absence of O<sub>2</sub> is much faster than the first step in the catalytic autoxidation, eq 11. Thus a different catalytic reaction, or a chain reaction, occurs under air-free conditions. The scavenging effect of  $(NH_3)_5CoF^{2+}$ , which lowers the rate constant to the value of that

- (31) Scott, S. L.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc., in press.
  (32) Budge, J. R.; Gatehouse, B. M. K.; Nesbit, M. C.; West, B. O. J. Chem. Soc., Chem. Commun. 1981, 370.
  (33) Groves, J. T.; Kruper, W. J.; Haushalter, R. C.; Butler, W. M. Inorg. Chem. 1982, 21, 1363.
- (34) Buchler, J. W.; Lay, K. L.; Castle, L.; Ullrich, V. Inorg. Chem. 1982, 21.842
- Liston, D. J.; West, B. O. Inorg. Chem. 1985, 24, 1568.
- Dyrkacz, G.; Rocek, J. J. Am. Chem. Soc. 1973, 95, 4756. (a) House, D. A.; Garner, C. S. *Nature* 1965, 208, 276. (b) Ranga-nathan, C. K.; Ramasami, T.; Ramaswamy, D.; Santappa, M. *Inorg. Chem.* 1989, 28, 1306. (c) Ghosh, S. K.; Gould, E. S. *Inorg. Chem.* (37) 1989. 28. 1948.
- (38) Ghosh, M. C.; Gould, E. S. Inorg. Chem. 1990, 29, 4258.

for reaction 11, strongly implicates Cr<sup>2+</sup> as a crucial intermediate. The effect of methanol on the overall stoichiometry requires at least one additional intermediate, which we believe to be CrO<sup>2+</sup>. One plausible scheme in the absence of CH<sub>3</sub>OH (Scheme II) Scheme II

chain initiation  

$$CrO_2^{2+} + CrCH_2OH^{2+} \rightarrow Cr^{2+} + CH_2O + H_2O$$
 (11)  
chain propagation

$$CrO_2^{2+} + Cr^{2+} \rightarrow nCrO^{2+}$$
 (18)

 $CrO^{2+} + CrCH_2OH^{2+} \xrightarrow{H^+} Cr^{2+} + Cr^{3+} + CH_2O + H_2O$ (20)

consists of reaction 11 to form Cr<sup>2+</sup>, reduction of CrO<sub>2</sub><sup>2+</sup> to CrO<sup>2+</sup>

(eq 18), and oxidation of  $CrCH_2OH^{2+}$  (eq 20). Although we have very little information on reaction 20, we expect it to yield  $Cr^{2+}$ , irrespective of whether the reaction takes place by a one- or two-electron pathway. A complete study of the air-free reaction between CrO<sub>2</sub><sup>2+</sup> and CrCH<sub>2</sub>OH<sup>2+</sup> and of reactions 18 and 20 is in progress.13

Acknowledgment. This research was supported by the National Science Foundation (Grant CHE-9007283). Some of the work was carried out in the facilities of Ames Laboratory. S.L.S. acknowledges receipt of a 1967 Science and Engineering Scholarship from the Natural Sciences and Engineering Research Council of Canada.

**Registry No.** CrO<sub>2</sub><sup>2+</sup>, 115185-67-6; CrCH<sub>2</sub>OH<sup>2+</sup>, 32108-95-5; CrCD<sub>2</sub>OD<sup>2+</sup>, 136358-09-3; CrO<sub>2</sub>H<sup>2+</sup>, 136358-10-6; CH<sub>2</sub>O, 50-00-0.

Contribution from the Department of Medicinal Chemistry, Hiroshima University, School of Medicine, Kasumi, Minami-ku, Hiroshima 734, Japan, Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

## The First Gold(III) Macrocyclic Polyamine Complexes and Application to Selective Gold(III) Uptake

Eiichi Kimura,\*,<sup>†,‡</sup> Yasuhisa Kurogi,<sup>†</sup> and Toshikazu Takahashi<sup>†</sup>

Received July 11, 1991

The hitherto unreported gold(III) macrocyclic polyamine complexes 12, 14, 18, 19, 23, and 24 with cyclam (1,4,8,11-tetraazacyclotetradecane, 1), phenol-pendant cyclam 2, pyridyl-pendant cyclam 3, monooxocyclam 4, phenol-pendant monooxocyclam 5, and pyridyl-pendant monooxocyclam 6 have been synthesized and characterized. Dissociation of a proton from one of the secondary amines in the "Au<sup>III</sup>-in" cyclam complexes 12, 14, and 18 readily occurs with  $pK_a$  values of 5.0-5.4 at 25 °C and I = 0.1 (NaClO<sub>4</sub>). Although monooxocyclam 4 does not accommodate Au(III), the donor-pendant monoxocyclams 5 and 6 enclose Au(III) with concomitant dissociation of an amide proton to yield 23 and 24, respectively. As anticipated for the diamagnetic d<sup>8</sup> complexes, the pendant donors only weakly interact from an axial site. The extraordinary acidity of Au(III) over other common metal ions in interaction with cyclam can be utilized for selective uptake of Au(III) with lipophilic cyclam derivatives 9 and 10.

#### Introduction

Although cyclam (1,4,8,11-tetraazacyclotetradecane, 1) has been widely used to sequester metal ions,<sup>1</sup> its complex with Au(III) is unknown. This is very puzzling in the light of the well-documentable Au(III) ability to form square-planar tetraamine (e.g. tetraamine, bis(ethylenediamine)) complexes.2-4



We now have isolated the Au(III)-cyclam complex 12. Its characterization has disclosed a rigid  $N_4$  square planarity and strong acidity of Au(III). This encouraged us to study more about the Au(III) complexation with phenol-pendant cyclam  $2,^{5-11}$ pyridyl-pendant cyclam 3,<sup>12-14</sup> and the corresponding monooxo-cyclams 4-6,<sup>15-18</sup> which were extremely useful in defining the acidic and coordinating properties of Cu<sup>II</sup>,<sup>7,10,14,16</sup>Ni<sup>II</sup>,<sup>6-10,12-14,16,17</sup> or  $Zn^{II,7,11,18}$  We were also interested in how the Au(III) acidity is reflected in the smaller macrocyclic ring 7. As the Au(III) interaction mode with macrocyclic tetraamines was disclosed, an

application of cyclam derivatives 9-11 for Au(III) uptake has been investigated. The results have proved the macrocyclic polyamines

- (a) Bosnich, B.; Poon, C. K.; Tobe, M. L. Inorg. Chem. 1965, 4, 1102.
   (b) Endicott, J. F.; Lilie, J.; Kuszaj, J. M.; Ramaswamy, B. S.; Schmonsees, W. G.; Simic, M. G.; Glick, M. D.; Rillema, D. P. J. Am. Chem. Soc. 1977, 99, 429.
   (c) Zeigerson, E.; Ginzburg, G.; Schwartz, N. Lu, Z. Murantin, D. C. Chen, Soc. G. Concernation, 2010. N.; Luz, Z.; Meyerstein, D. J. Chem. Soc., Chem. Commun. 1979, 241. (d) Zuckman, S. A.; Freeman, G. M.; Troutner, D. E.; Volkert, W. A.; 1566. (h) Beley, M.; Collin, J.-P.; Ruppert, R.; Sauvage, J.-P. J. Am. Chem. Soc. 1986, 108, 7461. (i) Shionoya, M.; Kimura, E.; Iitaka, Y. J. Am. Chem. Soc. 1990, 112, 9237.
- Skibsted, L. H.; Bjerrum, J. Acta Chem. Scand. 1974, A28, 740.
   Baddley, W. H.; Basolo, F.; Gray, H. B.; Nölting, C.; Pöe, A. J. Inorg. Chem. 1963, 2, 921.
- Kim, J.-H.; Everett, G. W., Jr. Inorg. Chem. 1981, 853. Kimura, E.; Koike, T.; Takahashi, M. J. Chem. Soc., Chem. Commun. (5) 1985, 385.
- (6) Iitaka, Y.; Koike, T.; Kimura, E. *Inorg. Chem.* 1986, 25, 402.
  (7) Kimura, E.; Yamaoka, M.; Morioka, M.; Koike, T. *Inorg. Chem.* 1986, 25, 3883.
- (8) Kimura, E.; Koike, T.; Uenishi, K.; Davidson, R. B. J. Chem. Soc., Chem. Commun. 1986, 1110. Kimura, E.; Uenishi, K.; Koike, T.; Iitaka, Y. Chem. Lett. 1986, 1137.
- Kimura, E.; Koike, T.; Uenishi, K.; Hediger, M.; Kuramoto, M.; Joko, S.; Arai, Y.; Kodama, M.; Iitaka, Y. Inorg. Chem. 1987, 26, 2975.
   Kimura, E.; Kurosaki, H.; Koike, T.; Toriumi, K. J. Inclusion Phenom.,
- in press. (12)
- Kimura, E.; Koike, T.; Nada, H.; Iitaka, Y. J. Chem. Soc., Chem. Commun. 1986, 1322. (13)
- Kimura, E. Pure Appl. Chem. 1989, 61, 823. Kimura, E.; Kotake, Y.; Koike, T.; Shionoya, M.; Shiro, M. Inorg. (14) Chem. 1990, 29, 4991.
- (15) Machida, R.; Kimura, E.; Kodama, M. Inorg. Chem. 1983, 22, 2055.

<sup>&</sup>lt;sup>†</sup>Hiroshima University.

<sup>&</sup>lt;sup>‡</sup>Institute for Molecular Science.