

trimetallic framework. The present work is also the first demonstration that the unsaturation inherent to the perpendicular mode is not a formalism but is effectively substantiated by chemical reactivity.

Acknowledgment. Financial support of this work by the CNRS is gratefully acknowledged.

Supplementary Material **Available:** A description of the experimental details for the X-ray structure analysis of complex **2** and tables of crystallographic data, refined atomic coordinates and hydrogen coordinates, anisotropic thermal parameters, interatomic distances, and bond angles (11 pages); a listing of observed and calculated structure factor amplitudes (31 pages). Ordering information is given on any current masthead page.

Laboratoire de Chimie de Coordination **Soa Rivomanana**
du CNRS **Guy Lavigne*** associé à l'Université Paul Sabatier et à

L'lnstitut National Polytechnique **Jean-Jacques Bonnet 205,** route de Narbonne **31077** Toulouse, France

Guy Lavigne*

Noël Lugan

Received July 19, 1991

Ar tides

Contribution **from** Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa **5001** 1

Catalytic Oxidation of the (Hydroxymethyl)chromium(III) Ion by the Superoxochromium(111) Ion

Susannah **L.** Scott, Andreja Bakac,* and James H. Espenson*

Received July *10, 1991*

The superoxochromium(III) ion, CrO₂²⁺, is an efficient catalyst for autoxidation of the (hydroxymethyl)chromium(III) ion, CrCH₂OH²⁺, is aqueous solution. The reaction involves one-electron oxidation of CrCH₂OH² yield Cr2+, CH20, and the novel **(hydroperoxo)chromium(III)** ion, Cr02H2+. The Cr2+ produced reacts rapidly with **O2** to regenerate the catalyst, CrO₂²⁺. When oxygen is depleted, the Cr²⁺ reacts instead with CrO₂²⁺ to produce the chromyl(IV) ion, CrO²⁺. This initiates a chain reaction that rapidly consumes the remaining CrO₂²⁺ and a stoichiometric amount of CrCH₂OH²⁺.

Introduction

Molecular oxygen is a powerful oxidant if not always a rapid one. Recent studies of the complexes formed between metal ions and molecular oxygen' have shown that coordination and partial reduction activate molecular oxygen toward many organic and inorganic substrates. Such reactions, important both industrially and biologically, involve a number of intermediates, whose lifetime and reactivity depend dramatically on the metal and ligands. Macrocycles, especially porphyrins, have a strong stabilizing effect on such intermediates, and the literature abounds with examples of metal-porphyrin complexes containing oxygen in the superoxo, peroxo, or oxo forms and the metal in any of a number of unusual oxidation states.²

Much less information is available on similar chemistry in non-porphyrin systems, especially in aqueous solution, mostly because the intermediates involved are usually too short-lived to be observed directly. With a few exceptions,^{1,3-5} the work reported in this area deals almost exclusively with oxygen-carrying prop erties of metal-oxygen adducts,^{1,6} not with mechanistic studies of their electron-transfer chemistry.

The reaction of Cr^{2+} with O_2 yields a long-lived superoxochromium(III) ion,⁷ CrO₂²⁺ (eq 1; here and elsewhere the co-

$$
Cr^{2+} + O_2 \rightleftharpoons CrO_2^{2+} \tag{1}
$$

ordinated water molecules are omitted). CrO₂²⁺ has been identified and characterized as a complex of chromium(II1) with superoxide.⁵ Unlike most of the other transition-metal-oxygen adducts, CrO₂²⁺ can be handled at room temperature even *under air-free conditions,* since the reverse reaction is so slow, $k_{-1} = 2.5$ \times 10⁻⁴ s⁻¹.⁵ This makes it possible to study its chemistry without

(7) (a) Ilan, *Y.* A.; Czapski, **G.;** Ardon, M. *Isr. J. Chem.* **1975.13, 15.** (b) Sellers, R. M.; Simic, M. G. J. *Am. Chem.* **Soc. 1976, 98, 6145.**

⁽¹⁾ (a) Sheldon, **R.** A.; Kochi, J. K. *Metal-Cata/yzed Oxidations oforganic Compounds;* Academic Press: New York, **1981.** (b) Bailey, C. L.; Drago, **R.** *S. Coord. Chem. Rev.* **1987, 79, 321.** (c) Martell, A. E., Sawyer, D. T., **Eds.** *Oxygen Complexes and Oxygen Activation by Transition Metals;* Plenum: New York, **1988.** (d) Spiro, T. **G.,** Ed. *Metal* Ion *Actiuation of Dioxygen;* Wiley: New York, **1980.** (e) Niaderhoffer, E. C.; Timmons, J. H.; Martell, A. **E.** *Chem. Reu.* **1984, 84, 137. (f')** Jones, **R.** D.; Summerville, D. A,; Basolo, F. Chem. *Reu.* **1979, 79, 140.**

⁽²⁾ For example: (a) Balch, A. L.; Hart, R. L.; Latos-Grazynski, L.; Traylor, T. G. J. Am. Chem. Soc. 1990, 112, 7382. (b) Burstyn, J. N.; Roe, J. A.; Miksztal, A. R.; Shaevitz, B. A.; Lang, G.; Valentine, J. S. *J. Am. Chem.* **Soc. 1988,** *110,* **1382.** (c) Nanthakumar, A.; Goff, H. M. *Inorg. Chem.* **1989, 28, 4559.** (d) Murata, K.; Panicucci, **R.;** Gopinath, E.; Bruice, T. C. J. Am. Chem. Soc. 1990, 112, 6072. (e)
Smith, J. R. L.; Balasubramanian, P. N.; Bruice, T. C. J. Am. Chem.
Soc. 1988, 110, 7411. (f) Tsang, P. K. S.; Sawyer, D. T. Inorg. Chem. **1990, 29, 2848. (g)** Woolery, **G.** L.; Walters, **M.** A,; Suslick, **K. S.;** Powers, L. S.; Spiro, T. G. *J. Am. Chem. Soc.* 1985, 107, 2370. (h)
Schappacher, M.; Weiss, R.; Montiel-Montoya, R.; Trautwein, A.;
Tabard, A. *J. Am. Chem. Soc.* 1985, 108, 3736. (i) Chin, D.-H.;
Gaudio, J. D.; La Mar, G **99, 5486** and references therein.

⁽³⁾ (a) Wong, C.-L.; Switzer, J. A.; Balakrishnan, K. P.; Endicott, J. F. *J. Am. Chem.* **Soc. 1980, 102, 5511.** (b) Wong, C.-L.; Endicott, J. F. *Inorg. Chem.* **1981, 20, 2233.** (c) Kumar, K.; Endicott, J. F. *Inorg. Chem.* **1984, 23, 2447.** (d) Endicott, J. F.; Kumar, K. *Mechanistic* Aspects of Inorganic Reactions; ACS Symposium Series 198; American Chemical Society: Washington, DC, 1982; p 425.
(4) Gubelmann, M. H.; Ruttimann, S.; Bocquet, B.; Williams, A. F. Helv.

Chim. Acta 1990, 73, 1219.

(5) (a) Brynildson, M. E.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc.

1987, 109, 4579. (b) Bruhn, S. L.; Bakac, A.; Espenson, J. H. Inorg.

Chem. 1986, 25, 535. (c) Brynildson, M. E.; Bakac,

SOC. 1983, *105,* **298.** (c) Goldsby. **K.** A.; Beato, B. D.; Busch, D. H. *Inorg. Chem.* **1986, 25, 2342.**

interference from free O_2 and in the absence of rapid oxygen binding/release equilibria. The thermal decomposition of $CrO₂²⁺$ and its reactions with inorganic reductants such as hydrazine, $Ru(NH₃)₆²⁺, Co(sp)²⁺, V²⁺, Fe²⁺, etc. have been studied.⁵ On$ the basis of the kinetic and spectral evidence obtained in that early work, it was proposed that one-electron outer-sphere reduction of $CrO₂²⁺$ yields a long-lived (hydroperoxo)chromium(III) ion, $CrO₂H²⁺$, which could not, however, be characterized owing to the extremely low concentrations of its immediate precursor, CrO₂²⁺, available to us at that time (typically <40 μ M).

In this paper, we report kinetic results for the autoxidation of $CrCH₂OH²⁺$, consisting of an uncatalyzed path and a path catalyzed by $CrO₂²⁺$. We present a mechanistic interepretation for the catalysis and conclusive evidence for the formation of $CrO₂H²⁺$ as a product at millimolar concentrations.

We also report an improved method for the preparation of $CrO₂²⁺$. This procedure permits 10-fold higher concentrations of the desired product (up to 0.5 mM) than was previously possible, with **no** undesirable chromium side products. Also, the presence of alcohols in the reaction medium stabilizes $CrO₂²⁺$ toward spontaneous decomposition in aerated solutions.

Experimental Section

Dilute solutions $(\leq 40 \mu M)$ of CrO₂²⁺ were initially prepared by injecting Cr²⁺ into 0.1 M aqueous HCIO₄ saturated with O₂, as described previously.⁵ Higher concentrations could not be prepared in this way, because the yield of $CrO₂²⁺$ decreases and those of chromium(III) and $HCrO₄$ increase as the total concentration of chromium increases.⁵ As described later in greater detail, it was found that much higher concentrations of $CrO₂²⁺$ can be prepared by essentially the same method, provided the solution contains a small amount of an alcohol. Later preparations typically used $0.1-1$ M CH₃OH. Concentrations of CrO_{2²⁺} were determined spectrophotometrically $(\lambda_{\text{max}} 290 \text{ nm}, \epsilon 3.1 \times 10^3 \text{ M}^{-1})$ cm⁻¹; λ_{max} 245 nm, ϵ 7.4 \times 10³ M⁻¹ cm⁻¹).^{5,7}

The (hydroxymethyl)chromium ion, CrCH₂OH²⁺, was prepared in solution⁸ and standardized spectrophotometrically (λ_{max} 392 nm, ϵ 570 M^{-1} cm⁻¹; λ_{max} 282 nm, ϵ 2.4 \times 10³ M⁻¹ cm⁻¹).^{8,9} In several cases the complex was purified by ion exchange on Sephadex **SP C-25.** The behaviors of the purified and unpurified complexes were identical in all of the reactions studied, and in most preparations the ion-exchange step was omitted. The deuterated complex CrCD₂OD²⁺ was prepared by the same method as $CrCH₂OH²⁺$, except that $D₂O$ and $CD₃OD$ were substituted for H_2O and CH₃OH. The preparation of CrCD₂OH²⁺ used H₂O and CD₂OD.

 $[Co(NH_3)_5F] (ClO_4)_2$ was prepared from $[Co(NH_3)_5F] (NO_3)_2^{10}$ and HCIO₄. Solutions of Co(NH₃)₅F²⁺ were prepared daily. Dilute solutions of H₂O₂ were prepared and standardized by I⁻/S₂O₃²⁻ titration daily. Alcohols were purchased from commercial suppliers and used as received.

Spectrophotometric titration curves and kinetic traces were obtained by measuring the change in absorbance at **290** nm, using a Cary **219** UV-visible spectrophotometer equipped with an internal timer and a thermostatted cell holder. At 290 nm, both $CrO₂²⁺$ and $CrCH₂OH²⁺$ contribute to the total absorbance. All reagents except $CrCH_2OH^{2+}$ were mixed in a spectrophotometer cell capped with a septum and saturated with either oxygen or argon. Air-free CrCH₂OH²⁺ was added by syringe to commence the reaction. For the determination of the kinetic isotope effect in the catalyzed autoxidation of CrCH₂OH²⁺, the kinetics were also determined on CrCD₂OD²⁺ in D₂O and CrCD₂OH²⁺ in H₂O. The total deuterium content in the former system was **>96%.** All the kinetic experiments were performed at **25.0** *i* 0.1 "C. Pseudo-first-order rate constants were obtained graphically as the negative of the slope of $\ln (A)$ $-A_{\infty}$) versus time or as a parameter from the nonlinear least-squares fit to a single-exponential rate law. Oxygen concentrations were measured with a dissolved-oxygen electrode from Hach Chemical Co.

Inorganic products were identified and their concentrations determined spectrophotometrically. Oxidizing titer was evaluated by deaerating the product solution with argon and then adding an excess of solid sodium iodide. The absorbance at 350 nm due to triiodide $(6.2.5 \times 10^4 \text{ M}^{-1})$ cm^{-1})¹¹ was measured to determine the concentration of iodine in solution. Formaldehyde was determined by chromotropic acid analysis.12

Figure 1. Kinetic trace at 290 nm for the reaction between CrCH₂OH²⁺ and $CrO₂²⁺$ in the presence of a limiting amount of $O₂$. Experimental conditions: 0.10 mM CrO₂²⁺, 0.42 mM CrCH₂OH²⁺, 0.2 M CH₃OH, **0.10** M HC104, **0.34** mM **02,** optical path length 1 cm.

Figure 2. Kinetic trace at 290 nm for the reaction between CrCH₂OH²⁺ and CrO₂²⁺ in the absence of O₂. Experimental conditions: 0.043 mM CrO\$+, **0.098** mM CrCH20H2+, **0.02** M CH30H, **0.013** M HCIO,, optical path length **2** cm.

Results

Qualitative Observations. The reaction between CrCH₂OH²⁺ and $CrO₂²⁺$ in the presence of excess $O₂$ was accompanied by an exponential decrease in absorbance at 290 nm. When O₂ was not in excess, the reaction profile showed a dramatic break (Figure 1). **In** the absence of **02,** the reaction was fast and autocatalytic (Figure 2).

Effect of CH₃OH on Yield and Stability of $CrO₂²⁺$ **.** As already noted in earlier work,⁵ the reaction of Cr^{2+} with O_2 in dilute aqueous HClO₄ (0.01-0.1 M) yielded CrO₂²⁺ quantitatively only at very low concentrations of Cr^{2+} (<40 μ M). At higher concentrations, large amounts of Cr(III) and HCrO₄⁻ (λ_{max} 345 nm, ϵ 1.44 \times 10³ M⁻¹ cm⁻¹) formed at the expense of CrO₂²⁺. The addition of as little as 0.01 M CH₃OH to the reaction mixture prior to or *immediately after* the injection of Cr2+ resulted in greatly improved yields of $CrO₂²⁺$. Up to 0.5 mM $CrO₂²⁺$ was prepared in this way, with no contamination by $HCrO₄$. Other alcohols, such as ethanol and 2-propanol, had the same effect on the yield of $CrO₂²⁺$. In addition, the decomposition of $CrO₂²⁺$ was slower in oxygenated solutions that contained the alcohol than in those that did not.

Catalyzed Reaction of CrCH₂OH²⁺ with O_2 . When CrO₂²⁺ $(0.008 - 0.12 \text{ mM})$ and CrCH₂OH²⁺ $(0.13 - 0.93 \text{ mM})$ are mixed in the presence of excess O_2 (0.25-1.27 mM), a straightforward catalytic process takes place (eq 2). $CrO₂²⁺$ is recovered fully by the contrained solutions that contained the alcohol than
see that did not.
alyzed Reaction of CrCH₂OH²⁺ with O₂. When CrO₂²⁺
i-0.12 mM) and CrCH₂OH²⁺ (0.13-0.93 mM) are mixed
presence of excess O₂ (0.25

$$
CrCH2OH2+ + O2 \xrightarrow{CrO2^{2+}} CrO2H2+ + CH2O k2 (2)
$$

at the end of the reaction, and CH₂O is produced quantitatively, i.e., $[CH_2O]_{\infty} \geq 0.9[CrCH_2OH^{2+}]_0$. The kinetics obey the first-order rate law of *eq* 3 to **>90%** completion. The rate constant k_2 (eq 4) is linearly dependent on $[CrO_2^{2+}]$ and independent of

$$
-d[CrCH2OH2+]/dt = kobs[CrCH2OH2+] (3)
$$

$$
k_{\text{obs}} = k_0 + k_2 [\text{CrO}_2^{2+}] \tag{4}
$$

 $[O_2]$, $[H^+]$, and $[CH_3OH]$. k_2 increases with increasing ionic

^{(8) (}a) Schmidt, W.; Swinehart, J. H.; Taube, H. J. Am. Chem. Soc. 1971, 93, 1117. (b) Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1981, 103, **2721**

⁽⁹⁾ cohen, **H.;** Meyerstein, D. *Inorg.* Chem. **1974, 13, 2434.**

Figure 3. Dependence of the pseudo-first-order rate constant for the reaction between $CrCH₂OH²⁺$ and $CrO₂²⁺$ on the concentration of Cr022+. Experimental conditions: **0.42** mM CrCH20H2+, **0.2** M CH30H. 0.10 M HCIO,, **0.3-1.2** mM **02, 25.0** "C.

strength $(HClO₄ + LiClO₄)$ at constant $[HClO₄] = 0.10$ M. The data in Figure 3 yield $k_2 = 137 \pm 5$ M⁻¹ s⁻¹ at $\mu = 0.10$ M. The intercept k_0 is a summation of terms corresponding to the known hydrolysis of $CrCH₂OH^{2+8,9}$ and direct autoxidation of $CrCH₂OH²⁺$, discovered in this work and described subsequently. As seen in Figure 3, the k_0 term contributes little to the overall rate constant under the experimental conditions.

In one experiment, the change in oxygen concentration was monitored by **use** of a dissolved-oxygen electrode. The data yielded k_2 = 140 M⁻¹ s⁻¹, in excellent agreement with the value determined spectrophotometrically.

The value of k_2 is virtually unaffected by deuteration at carbon. For the reaction between CrCD₂OH²⁺ and CrO₂²⁺, $k_2 = 122$ M⁻¹ s^{-1} for a primary isotope effect of $k_H/k_D = 1.1$. However, the value of k_2 for the reaction of $CrCD_2OD^{2+}$ in D_2O is 76 M⁻¹ s⁻¹, therefore for 0-deuteration, the kinetic isotope effect is 1.8.

The reaction of the O-methylated complex, $CrCH₂OCH₃²⁺$ with $CrO₂²⁺$ is much slower than the reaction of $CrCH₂OH²⁺$. Also, the first-order plots for the former reaction conducted in the presence of a large excess of O_2 are nonlinear.

The (Hydroperoxo)chromium(III) Ion. The identification of the chromium product as $CrO₂H²⁺$ is based on the following evidence. After completion of reaction 2, iodometric analysis of spent solutions confirmed the presence of 2 oxidizing equiv/mol of initial $CrCH₂OH²⁺$ in addition to the oxidizing equivalents present due to the catalyst, $CrO₂²⁺$. The reaction of the oxidizing product with iodide under a given set of conditions (0.10 M H+, 50 mM I-) is complete in a few seconds. The product is thus clearly not free H_2O_2 , whose reaction with iodide was measured under identical conditions and required several hours for completion.

The most convincing evidence for this reaction being an intact one-electron reduction product of $CrO₂²⁺$ comes from its reaction with Ce(IV). When 1 equiv of the latter is added to the solution after completion of reaction 2, $CrO₂²⁺$ is produced in a concentration comparable to (\sim 75%) that of CrCH₂OH²⁺ consumed, consistent with eq 5. Some decay of CrO₂H²⁺ takes place on the

time scale of the experiment; see later.
\n
$$
CrO2H2+ + Ce(IV) \rightarrow CrO22+ + Ce(III) + H+
$$
 (5)

Independent experiments showed that the stoichiometric reaction of CrO_2^{2+} with $\text{Ru(NH}_3)_6^{2+}$ also yields CrO_2H^{2+} (eq 6), as proposed previously.⁵⁶ Subsequent reoxidation by Ce(IV) again restores the spectrum of CrO_2^{2+} .
CrO₂²⁺ + Ru(NH₃)₆²⁺ \frac as proposed previously.^{5c} Subsequent reoxidation by $\overline{Ce}(IV)$ again restores the spectrum of $CrO₂²⁺$.

$$
CrO22+ + Ru(NH3)62+ $\xrightarrow{H^*}$ CrO₂H²⁺ + Ru(NH₃)₆³⁺ (6)
$$

After reaction 2 is complete, the absorbance in the visible range decreases with a simultaneous loss of the oxidizing titer of the solution. We assign this process to the decomposition of $CrO₂H²⁺$. The final spectrum is that of Cr^{3+} , although we cannot rule out the presence of some other low-absorbing chromium products. Figure **4** shows the spectrum measured immediately after completion of reaction **2,** the final spectrum obtained 1.5 h later, and a difference spectrum of $CrO₂H²⁺$. A complete study of the

Figure 4. (a) Spectra of the reaction mixture **recorded** immediately after the catalytic reaction (upper line) and **1.5** h later (lower line). (b) Difference between the absorption spectra of $CrO₂H²⁺$ and its decomposition products, obtained by subtraction of the spectra in (a). The initial concentrations of reagents were 0.24 mM CrCH₂OH²⁺, 0.020 mM $CrO₂²⁺$, 0.16 M HClO₄, and 0.45 mM $O₂$; optical path length was 5 cm.

decomposition and reactivity of $CrO₂H²⁺$ will be reported elsewhere.¹³

Uncatalyzed Reaction of CrCH₂OH²⁺ with O₂. Air-free solutions of CrCH₂OH²⁺ slowly decompose by acid-dependent acidolysis to yield Cr^{3+} and $CH_3OH^{8,9}$ The decomposition of $CrCH₂OH²⁺$ is strongly accelerated by $O₂$ and yields formaldehyde. At 0.1 M H⁺, the respective rate constants for decomposition of 0.23 mM CrCH₂OH²⁺ in argon-saturated and O_2 -saturated solutions are 1×10^{-3} and 8×10^{-3} s⁻¹. The reaction in the presence of O_2 appears to have a minor autocatalytic component, and the rate constant evaluated at the very end of the reaction was \sim 10% greater than that obtained from the initial portion of the trace. The final spectrum showed the presence of some $CrO₂²⁺$ (≤0.06 mM) among the reaction products. Oxidation of the spent solution by Ce(IV) (eq *5)* produced a clean spectrum of 0.16 mM CrO₂²⁺, indicating that CrO₂H²⁺ is a major chromium product. The overall reaction can thus be written as in eq 7.

in eq 7.
CrCH₂OH²⁺ + O₂
$$
\rightarrow
$$
 CH₂O + CrO₂H²⁺ (+CrO₂²⁺ + Cr³⁺) (7)

The sum of the concentrations of $CrO₂²⁺$ and $CrO₂H²⁺$, 0.16 mM, is less than the amount of CrCH₂OH²⁺ initially present, 0.23 mM. The missing chromium is present as **Cr(III),** formed both by parallel acidolysis of CrCH₂OH²⁺ and by decomposition of $CrO₂H²⁺$, which appears to be complete in less than 1 h. Since it requires \sim 10 min for the completion of reaction 7, some $CrO₂H²⁺$ decomposed before the addition of Ce(IV).

The presence of $CrO₂²⁺$ among the reaction products and the established catalytic effect of this species on the reaction of CrCH₂OH²⁺ with O₂ explain the appearance of the kinetic traces. As the uncatalyzed reaction of *eq* 7 produces more and more $CrO₂²⁺$, the contribution from the catalytic pathway of eq 2 becomes increasingly important as the reaction nears completion.

In order to determine the rate constant for reaction 7 without complications from the catalytic path, experiments were conducted in the presence of Fe^{2+} , a good scavenger for $CrO₂²⁺$.^{5c} Under these conditions, $CrCH₂OH²⁺$ disappears in two parallel processes, acidolysis^{8,9} and reaction 7. All the CrO₂²⁺ produced in eq 7 is destroyed rapidly by Fez+. *As* expected, in the presence of a large excess of Fe^{2+} , the disappearance of $CrCH₂OH²⁺$ followed first-order kinetics cleanly according to the rate law of *eq* 8. The

$$
-d \ln [CrCH_2OH^{2+}]/dt = k_0 = k_a + k_{O_2}[O_2] \qquad (8)
$$

rate constants k_0 were independent of the concentration of Fe²⁺ (1.0–100 mM) and yielded $k_{O_2} = 5.0 \pm 0.3$ M⁻¹ s⁻¹ in 0.10 M HClO₄ (Figure 5).

The reaction of CrCH₂OH²⁺ with CrO₂²⁺ in the absence of O_2 is strikingly different from the reaction in oxygenated solutions

Figure 5. Dependence of the pseudo-first-order rate constant for the reaction between CrCH₂OH²⁺ and O_2 **on the concentration of** O_2 **. Experimental conditions: 0.055 mM CrCH20Hz+, 0.10 M HCIO,, 70 mM CH₃OH, 1 mM Fe²⁺, 25.0 °C.**

First, the removal of O₂ converts the catalytic system of eq 2 into a noncatalytic one. The stoichiometry of eq 9 was determined $CrCH_2OH^{2+} + 2 CrO_2^{2+} \rightarrow CH_2O + Cr(III)$ products (9)

$$
CrCH2OH2+ + 2 CrO22+ \rightarrow CH2O + Cr(III) products (9)
$$

by spectrophotometric titration using $CrO₂²⁺$ as the titrant and by formaldehyde analysis. Both types of experiments were **con**ducted at low concentrations of **CH30H** (0-0.01 **M).** In the presence of ≥ 0.1 M CH₃OH, the stoichiometric ratio Δ - $[CrO₂²⁺]/\Delta [CrCH₂OH²⁺]$ was 4.0, and the yield of CH₂O was 3 mol/mol of **CrCH20H2+.** Thus the reaction induces the oxi-

$$
CrCH2OH2+ + 4CrO22+ + 2CH3OH \rightarrow
3CH₂O + Cr(III) products (10)
$$

The second effect is kinetic. Reaction 9 is much faster $(t_{1/2})$ $= 1-2$ s) in the absence of O_2 under conditions where $t_{1/2} = 25-30$ **s** in its presence. The best way to illustrate the efiect of the removal of O₂ is to conduct the catalytic reaction in the presence of a limiting amount of **02.** The kinetic trace (Figure **1)** begins smoothly, as expected for the reaction of eq 2. As soon as O₂ is depleted, the absorbance drops abruptly, signaling that all the CrO₂²⁺ and an equivalent amount of CrCH₂OH²⁺ have been consumed suddenly in reaction 9 or **10.**

When the air-free reaction between CrO₂²⁺ and CrCH₂OH²⁺ was conducted in the presence of 0.04 M $(NH₃)₅CoF²⁺$, a good scavenger for Cr²⁺,¹⁴ the disappearance of CrO₂²⁺ at 290 nm occurred with a rate constant of **122 M-'** s-I, a value close to that obtained in the catalytic system in the presence of $O₂$.

Discussion

Cr022+ is quite an effective catalyst for the oxidation of **CrCH20H2+** by **02.** At **0.10 M** ionic strength, the rate constants for the catalyzed and uncatalyzed reactions are $k_2 = 137 \text{ M}^{-1} \text{ s}^{-1}$ and $k_{0} = 5.0$ M⁻¹ s⁻¹.

A straightforward mechanism for the catalyzed reaction that accommodates all the experimental observations is shown in eqs

11 and 1. The one-electron oxidation of CrCH₂OH²⁺ by CrO₂²⁺
CrCH₂OH²⁺ + CrO₂²⁺
$$
\xrightarrow{k_2}
$$
 Cr²⁺ + CH₂O + CrO₂H²⁺ (11)

produces Cr²⁺ and CrO₂H²⁺. Cr²⁺ then reacts rapidly⁷ with O₂ $(k_1 = 1.6 \times 10^8 \text{ M}^{-1} \text{ s}^{-1})$ to regenerate the catalyst, CrO_2^{2+} . It is quite reasonable that the reaction of eq **11** should produce chromium in the oxidation state **2+,** given that reactions of CrCH₂OH²⁺ with other oxidants, such as Cu²⁺,^{8b} Fe³⁺,^{8b} and **VO2+,I5** also yield **Cr2+** as the initial product. Also, the quantitative formation of CH₂O and CrO₂H²⁺ confirms the overall stoichiometry of eq 1 **1.**

The exact mechanism of reaction **11** is more difficult to ascertain. Two possibilities seem particularly appealing. The first is an outer-sphere reaction, eq 12, which would yield $CrO₂$ ⁺ and **CrCH20H3+.** In the rapid subsequent steps, eqs **13** and **14,** the reaction of $CrO₂$ ⁺ with H⁺ yields $CrO₂H²⁺$, and $CrCH₂OH³⁺$

undergoes a rapid intramolecular electron transfer, producing Cr²⁺, **CH20,** and **H+.** C , and H⁺.
CrO₂²⁺ + CrCH₂OH²⁺ \rightarrow CrO₂⁺ + CrCH₂OH³⁺ (12)

$$
CrO22+ + CrCH2OH2+ \to CrO2+ + CrCH2OH3+ (12)
$$

$$
CrO2+ + H+ \rightleftharpoons CrO2H2+
$$
 (13)

$$
CrO2+ + H+ \rightleftharpoons CrO2H2+
$$
 (13)
CrCH₂OH³⁺ \rightarrow Cr²⁺ + CH₂O + H⁺ (14)

The reduction potentials and self-exchange rate constants for the two reactants in eq **12** are not known, which rules out a possibility of estimating the expected rate constant for the process. However, both outer-sphere reduction of **Cr02"** and outer-sphere oxidation of CrCH₂OCH₃²⁺, the O-methylated analogue of **CrCH20H2+,** have been demonstrated before. This, at least in principle, makes reaction **12** feasible. For example, outer-sphere reductants $Co(\text{sep})^{2+}$, V^{2+} , and $Ru(NH_3)_{6}^{2+}$ reduce CrO_2^{2+} with rate constants in the range 10^5 – 10^6 M⁻¹ s⁻¹.^{5c} Similarly, Ru- $(bpy)_{3}^{3+}$ $(E^{\circ}_{3+/2+} = 1.26 \text{ V})^{16}$ oxidizes $CrCH_{2}OCH_{3}^{2+}$ to CrCH₂OCH₃³⁺ with a rate constant $k = 1.0 \times 10^7$ M⁻¹ s⁻¹.¹⁷ Subsequent rapid decomposition of **CrCH20CH33+** takes place in a reaction analogous to eq 14 to yield Cr²⁺, CH₂O, and **CH₃OH.¹⁷** The reduction potential of the CrO₂^{2+/+} couple¹⁸ is probably much lower than that of $Ru(bpy)_{3}^{3+/2+}$, and the lower reactivity of the former toward CrCH₂OH²⁺ was to be expected.

Another feasible mechanism for reaction **2** is depicted in *eq* 15. The attack of CrO_2^{2+} at the alcohol OH group of $CrCH_2OH^{2+}$
 $CrCH_2OH^{2+} + CrO_2^{2+} \rightarrow$

$$
CrCH2OH2+ + CrO22+ →
$$

\n[Cr–CH₂–O-·-H-·-O–O–Cr]⁴⁺ →
\nCr²⁺ + CH₂O + HO₂Cr²⁺ (15)

results in hydrogen transfer that yields CrO₂H²⁺. The other products, CH₂O and Cr²⁺, can be formed either in a concerted manner (eq **15)** or by a rapid subsequent decomposition of the transient CrCH₂O²⁺

The mechanism of eq **15** derives some support from the fact that replacement of **CrCH20H2+** in eq **2** by the 0-methylated analogue, CrCH₂OCH₃²⁺, results in a slow, kinetically ill-behaved reaction. The presence of the alcohol **OH** group thus seems to be crucial mechanistically. If the outer-sphere mechanism of *eq* **12** were to hold, one would expect the two organochromium complexes to behave similarly, since both their reduction potentials and self-exchange rate constants should be comparable.

A hydrogen atom transfer mechanism involving the **0-D** bond is also consistent with a kinetic isotope effect of $k_H/k_D > 1$ for CrCD₂OD²⁺. The observed effect is, however, a composite of the solvent effect, the effect arising from deuteration of H_2O coordinated to both reactants, and the possible genuine effect arising from hydrogen transfer. The value $k_H/k_D = 1.8$ is not sufficiently large to draw unequivocal mechanistic conclusions.

The rate constant for the direct autoxidation of CrCH₂OH²⁺, k_{O_2} = 5.0 M⁻¹ s⁻¹, was determined in the presence of Fe²⁺ to scavenge any $CrO₂²⁺$ produced and thus eliminate a possible contribution from the catalytic pathway of *eq* **2.** However, the rate constants obtained in the presence and absence of Fe2+ were comparable and only a hint of autocatalysis was obtained under the latter conditions. The yield of $CrO₂²⁺$ was <25% of total chromium. All of these results indicate that the reaction proceeds by at least two pathways, only one of which produces **Cr2+** that appears as CrO₂²⁺ in oxygen-containing solutions. This reaction might be an outer-sphere process (eq 16) yielding Cr^{2+} , CH₂O,
 $CrCH_2OH^{2+} + O_2 \rightarrow Cr^{2+} + CH_2O + HO_2$ (16)

$$
CrCH2OH2+ + O2 \rightarrow Cr2+ + CH2O + HO2
$$
 (16)

and O_2 ⁻. The latter would be converted rapidly to HO_2 and disproportionate¹⁹ to O₂ and H₂O₂, or it might oxidize a second molecule or CrCH₂OH²⁺.

- (17) Melton, J. D.; Espenson, J. H.; Bakac, A. *Inorg. Chem.* 1986, 25, 4104. (18) The potential for the couple ([14]aneN₄)CoO₂^{2+/+} has been estimated^{3c} as 0.3 ± 0.1 V. The potential of the CrO₂^{2+/+} couple is **very different. given that the rate constants for the oxidation of the three reductants by** $CrO_2^{2+5\alpha}$ **and** $([14]$ **aneN₄)CoO₂^{2+ 3}^c are remarkably similar.**
- **(19) Bielski, B. H. J.** *Phorochem. Phofobiol.* **1978, 28, 645.**

⁽¹⁴⁾ Candlin, J. P.; Halpern, J. *Inorg. Chem.* **1965,** *4.* **766.**

⁽IS) Bakac, A.; Espenson, J. H. *Inorg. Chem.* **1981, 20, 1621.**

⁽¹⁶⁾ Sutin, N.; Creutz, C. *Adu. Chem. Ser.* **1978,** *168.* **I.**

Most of the major chromium product, $CrO₂H²⁺$, thus had to be formed by a route different from the CrO_2^{2+} -catalyzed reaction of eq 2. An interesting possibility is a direct attack by O_2 at the substitutionally labile²⁰ position trans to the CH₂OH group of the organochromium complex (eq 17) followed by the rapid proton-
 O_2 + CrCH₂OH²⁺ \rightarrow O₂Cr⁺ + CH₂O + H⁺ (17)

$$
O_2 + CrCH_2OH^{2+} \rightarrow O_2Cr^+ + CH_2O + H^+ \qquad (17)
$$

ation of $CrO₂⁺$. Attack at the CH₂OH group that would yield H02 directly appears much less likely, since this would in effect by a hydrogen atom abstraction by molecular oxygen.

It has been proposed previously⁵ that one-electron reduction of CrO₂²⁺ yields CrO₂H²⁺. However, no direct evidence for this novel species has been obtained prior to this work. The full recovery of the CrO₂²⁺ spectrum upon oxidation of CrO₂H²⁺ with 1 equiv of Ce(IV) leaves little doubt about the identity of this species.2' The spectral features (Figure 4) are as expected for an inorganic, weakly absorbing chromium(**111)** complex, and the molecule is probably best described as a (hydroperoxo)chromium(l1I) species. The only uncertainty associated with this species seems to be the level of protonation in the acidity range studied, **0.1-1 M** H+. Assuming that coordination of Cr3+ affects the acidity of H_2O_2 to the same extent that it does the acidity of H_2O (the p K_a of $\text{Cr}(\text{H}_2\text{O})_6^{3+}$ is 4) and taking into account that the p K_a 's of free H_2O (14) and H_2O_2 (11.9) differ by only 2 units, one might reasonably expect that both $CrO₂H²⁺$ and $Cr(H₂O₂)³⁺$ coexist in acidic solutions. Such an expectation is corroborated by the fact that the acidity constants of $Fe(H_2O)_6^{3+}$ (\rightleftharpoons Fe(H₂O)₅OH²⁺ + H^+ ; pK_a 3) and $(H_2O)_5Fe(H_2O_2)^{3/2}$ ($\approx (H_2O)_5FeO_2H^{2+} + H^+$; pK_a 1.2)²² differ by less than 2 pK units. We can thus assume with some confidence that the pK_a of $Cr(H_2O_2)^{3+}$ is in the range 1-3. However, for the sake of simplicity, the formula $CrO₂H²⁺$ is used to represent both forms of the hydroperoxo complex.

To our knowledge $CrO₂H²⁺$ is only the second example of an end-bonded (hydroperoxo)metal complex that is long-lived in aqueous solution. The chemistry of the other example, ([14] ane N_4)CoO₂H²⁺,^{3b,23} has been explored only marginally.

Effect of Alcohols on Yields and Lifetime of $CrO₂²⁺$ **.** The increased yields of $CrO₂²⁺$ in the reaction between $Cr²⁺$ and excess *O2* in the presence of even small amounts of an alcohol ([ROH] \leq 0.1 M) show clearly that at least one reaction intermediate reacts with alcohols. Even more surprising was the finding that additional CrO_2^{2+} was found even when the alcohol was added within a few seconds *after* the mixing of Cr^{2+} with excess O_2 .

The reaction of Cr^{2+} and O_2 is known^{5,7,24-27} to be a multistep process that involves several intermediates. Only the first one in the sequence, CrO_2^{2+} , has been identified directly in the autoxidation of Cr^{2+7} Other proposed intermediates are CrO_2Cr^{4+} , $CrOCr⁴⁺$, and $CrO²⁺$. The first two have been prepared independently.28.29 but they *have not* been observed directly in the autoxidation process. The last, CrO^{2+} , was proposed⁵ to be an extremely short-lived transient that is rapidly reduced by Cr^{2+} to dimeric Cr(II1). The same species is believed to be an intermediate in the reductions of Cr(V1) by a variety of organic reductants, including alcohols.³⁰

(20) Bakac, A.; Espenson, J. **H.;** Miller, L. P. Inorg. *Chem.* **1982, 21, 1557. (21)** One reviewer questioned the observation that CrOOH2+ reacts rapidly with I⁻ but does not seem to react with Cr²⁺ in the proposed catalytic mechanism. The effect is purely a kinetic one: Cr^{2+} does indeed react with CrOOH²⁺, but as with H₂O₂, the reaction is slow compared to th

- **(22) (a)** Lewis, T. J.; Richards, D. **H.;** Sutter, D. A. J. *Chem. Soc.* **1963, 2434.** (b) Taube, H. *Prog.* Inorg. *Chem.* **1986,** *34,* **607.**
- **(23)** Geiger, T.; Anson, F. C. *J. Am. Chem. Soc.* **1981,** *103,* **7489.**
- **(24)** Piccard, J. *Ber. Drsch. Chem.* **Ges. 1913,** *46.* **2477.**
-
- (25) Ardon, M.; Plane, R. A. *J. Am. Chem. Soc.* 1959, 81, 3197.
(26) Kolaczkowski, R. W.; Plane, R. A. *Inorg. Chem.* 1964, 3, 322.
(27) Ardon, M.; Stein, G. J. *Chem. Soc.* 1956, 2095.
(28) Adams, A. C.; Crook, J. R.; Bo
-
- Adams, A. C.; Crook, J. R.; Bockhoff, F.; King, E. L. J. Am. Chem. Soc. 1968, 90, 5761.
- **(29)** (a) Holwerda, R. A.; Petersen, J. **S.** Inorg. *Chem.* **1980,** *19,* **1775.** (b) Johnston, R. F.; Holwerda, R. A. Inorg. *Chem.* **1985,24,3176, 3181.**
- (30) For example: (a) Rocek, J.; Westheimer, F. H.; Eschenmoser, A.; Moldovanyi, L.; Schrekber, J. Helv. Chim. Acta 1962, 45, 2554. (b) Rahman, M.; Rocek, J. J. Am. Chem. Soc. 1971, 93, 5455, 5462. (c) Rocek, J.; Radkowsky, **A.** E. J. *Am. Chem. SOC.* **1973,** *95,* **7123.**

None of the long-lived oxidizing species $(CrO₂²⁺, CrO₂Cr⁴⁺,$ and CrOCr⁴⁺) react with alcohols. Also, $HCrO₄$, which might be present in small concentrations,⁵ is unreactive on these time scales.³⁰

We have recently reported that the reaction of Cr^{2+} with O_2 leads to formation of the surprisingly long-lived oxochromium(**IV)** ion, CrO²⁺ $(t_{1/2} \sim 40 \text{ s at } 25 \text{ °C})$.³¹ CrO²⁺ reacts with methanol and other alcohols in a two-electron process which yields Cr^{2+} as the immediate product. In the presence of excess O_2 , Cr^{2+} is trapped and becomes $CrO₂²⁺$. The effect of methanol is therefore trapped and becomes $C_1C_2^2$ into CrO₂²⁺ (Scheme I). A possible source of CrO²⁺ is the reaction of CrO₂²⁺ with Cr²⁺, a reaction which has been proposed to be extremely fast.⁵

Scheme I

$$
CrO22+ + Cr2+ \rightarrow nCrO2+ + other Cr products (18)
$$

CrO²⁺ + CH₃OH \rightarrow Cr²⁺ + CH₂O + 2H⁺ (19)

$$
CrO^{2+} + CH_3OH \rightarrow Cr^{2+} + CH_2O + 2H^+ \qquad (19)
$$

$$
Cr^{2+} + O_2 \rightarrow CrO_2^{2+}
$$
 (1)

The decomposition of $C_{1}O_{2}^{2+}$ was shown to involve rate-determining homolysis of the Cr-O bond to produce Cr^{2+} and O_2 .⁵ Cr^{2+} either recombines with O_2 or reacts with CrO_2^{2+} ; the latter process contributes to the net loss of $CrO₂²⁺$. If the product of this reaction is $C\tau O^{2+}$, as proposed above, then $CH₃OH$ will convert CrO^{2+} to Cr^{2+} , which again makes a choice between $CrO₂²⁺$ and $O₂$. Since the reaction with $O₂$ regenerates $CrO₂²⁺$, the lifetime of $CrO₂²⁺$ increases in the presence of CH₃OH and O_2 . The corollary is also observed: in the absence of O_2 , CH₃OH contributes to a decreased lifetime for $CrO₂²⁺$ by recycling $CrO²⁺$ into Cr²⁺, which destroys additional CrO₂²⁺.

At this stage of development,¹³ eq 18 implies only that the reaction of CrO_2^{2+} with Cr^{2+} yields some CrO^{2+} . The stoichiometry and the mechanism of the reaction have not been established,¹³ although it is almost certain that this is not a simple outer-sphere electron transfer. We favor the initial formation of an oxygen-bridged intermediate (or transition state), as proposed $previously.$ ^{5,24} The intermediate then either cleaves spontaneously or reacts with additional Cr^{2+5} to yield CrO^{2+} . If the former path should operate, the intermediate $CrO₂Cr⁴⁺$ produced in reaction 18 would have to be an isomer of the known species of the same formula,²⁸ since the latter does not yield CrO^{2+} nor does it react with alcohols.

Although the oxochromium(1V) ion, Cr02+, has until now **been** an elusive species, the long-lived 4+ oxidation state is not unknown in chromium chemistry. The reaction of $(TPP)Cr^{III} (TPP =$ dianion of tetraphenylporphyrin) with O_2 in toluene has been reported32 to yield a stable chromyl complex that has been characterized crystallographically. Alternative routes to this and other chromyl porphyrin complexes have since been reported.³³⁻³⁵ Other stable chromium(1V) compounds include tetraalkoxides, tetraalkyls, and tetrakis(dialkylamides).³⁶ Also, diperoxochromium(IV) complexes are quite stable in aqueous solution 37 and a transient chelated chromium(1V) has recently been observed.38

The reaction of $CrCH₂OH²⁺$ with $CrO₂²⁺$ in the absence of $O₂$ is much faster than the first step in the catalytic autoxidation, eq 11. Thus a different catalytic reaction, or a chain reaction, occurs under air-free conditions. The scavenging effect of (NH_3) ₅CoF²⁺, which lowers the rate constant to the value of that

-
- (31) Scott, S. L.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc., in press.
(32) Budge, J. R.; Gatehouse, B. M. K.; Nesbit, M. C.; West, B. O. J. Chem.
Soc., Chem. Commun. 1981, 370.
(33) Groves, J. T.; Kruper, W. J.; Haush
-
- **(34)** Buchler, J. W.; Lay, K. L.; Castle, L.; Ullrich, **V.** Inorg. *Chem.* **1982,** *21,* **842.**
- **(35)** Liston, D. J.; West, B. 0. Inorg. *Chem.* **1985,** *24,* **1568.**
- **(36)** Dyrkacz, **G.;** Rocck, J. J. *Am. Chem. Soc. 1973,* **95,4756. (37)** (a) **House,** D. A.; Garner, C. **S.** Nature **1965. 208, 276.** (b) Ranga- nathan, C. K.; Ramasami, T.; Ramaswamy, D.; Santappa, M. Inorg. *Chem.* **1989,** *28,* **1306.** (c) Ghosh, **S. K.;** Gould, E. **S.** Inorg. *Chem.* **1989, 28, 1948.**
- **(38)** Ghosh, M. **C.;** Gould, E. **S.** Inorg. *Chem.* **1990, 29, 4258.**

for reaction 11, strongly implicates Cr^{2+} as a crucial intermediate. The effect of methanol on the overall stoichiometry requires at least one additional intermediate, which we believe to be CrO2+. One plausible scheme in the absence of $CH₃OH$ (Scheme II) **scheme I1**

chain initiation

$$
CrO22+ + CrCH2OH2+ \rightarrow Cr2+ + CH2O + H2O (11)
$$

chain propagation

$$
CrO22+ + Cr2+ \rightarrow nCrO2+
$$
 (18)

CrO₂⁺ + CrCH₂OH²⁺ + Cr²⁺ + Cr²⁺ (18)
CrO₂²⁺ + CrCH₂OH²⁺ + C_r²⁺ + C_r³⁺ + CH₂O + H₂O
CrO²⁺ + CrCH₂OH²⁺ + C_r²⁺ + C_r³⁺ + CH₂O + H₂O₍₂₀₎ **(20) n+**

consists of reaction 11 to form Cr^{2+} , reduction of $CrO₂²⁺$ to $CrO²⁺$

(eq 18), and oxidation of CrCH20H2+ *(eq* 20). Although we have very little information on reaction 20, we expect it to yield Cr^{2+} , irrespective of whether the reaction takes place by a one- or two-electron pathway. A complete study of the air-free reaction between $CrO₂²⁺$ and $CrCH₂OH²⁺$ and of reactions 18 and 20 is in progress.¹³

Acknowledgment. This research was supported by the National Science Foundation (Grant CHE-9007283). Some of the work was carried out in the facilities of Ames Laboratory. S.L.S. acknowledges receipt of a 1967 Science and Engineering Scholarship from the Natural Sciences and Engineering Research Council of Canada.

Registry No. CrO₂²⁺, 115185-67-6; CrCH₂OH²⁺, 32108-95-5; CrCDz0D2+, **136358-09-3;** CrO2Hz*, **136358-10-6;** CH20, **50-00-0.**

Contribution from the Department of Medicinal Chemistry, Hiroshima University, School of Medicine, Kasumi, Minami-ku, Hiroshima **734,** Japan, Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki **444,** Japan

The First Gold(111) Macrocyclic Polyamine Complexes and Application to Selective Gold(II1) Uptake

Eiichi Kimura,*^{1,1} Yasuhisa Kurogi,[†] and Toshikazu Takahashi[†]

Received July I *I, I991*

The hitherto unreported gold(II1) macrocyclic polyamine complexes **12, 14, 18, 19, 23,** and **24** with cyclam **(1,4,8,1** l-tetraazacyclotetradecane, **I),** phenol-pendant cyclam **2,** pyridyl-pendant cyclam **3,** monooxocyclam **4,** phenol-pendant monooxocyclam **5,** and pyridyl-pendant monooxocyclam **6** have been **synthesized** and characterized. Dissociation of a proton from one of the secondary amines in the "Au^{III}-in" cyclam complexes **12, 14, and 18** readily occurs with pK_a values of 5.0-5.4 at 25 °C and $I = 0.1$ (NaClO₄). Although monooxocyclam **4** docs not accommodate Au(III), the donor-pendant monoxocyclams **5** and *6* enclose Au(II1) with concomitant dissociation of an amide proton to yield 23 and 24, respectively. As anticipated for the diamagnetic d⁸ complexes, the pendant donors only weakly interact from an axial site. The extraordinary acidity of Au(II1) over other common metal ions in interaction with cyclam can be utilized for selective uptake of Au(II1) with lipophilic cyclam derivatives **9** and **10.**

Introduction

Although cyclam **(1,4,8,11-tetraazacyclotetradecane, 1)** has been widely used to sequester metal ions,¹ its complex with Au(III) is unknown. This is very puzzling in the light of the well-documentable Au(II1) ability to form square-planar tetraamine (e.g. tetraamine, bis(ethylenediamine)) complexes.²⁻⁴

We now have isolated the Au(III)-cyclam complex **12.** Its characterization has disclosed a rigid **N4** square planarity and strong acidity of Au(II1). **This** encouraged us to study more about the Au(II1) complexation with phenol-pendant cyclam **2,5-11** pyridyl-pendant cyclam **3,I2-l4** and the corresponding monooxocyclams 4–6,^{15–18} which were extremely useful in defining the acidic and coordinating properties of Cu^{II}, 7,10,14,16Ni^{II}, 6-10,12-14,16,17 or $Zn^{11,7,11,18}$ We were also interested in how the Au(III) acidity is reflected in the smaller macrocyclic ring **7.** As the Au(II1) interaction mode with macrocyclic tetraamines was disclosed, an

application of cyclam derivatives **9-11** for Au(II1) uptake has been investigated. The results have proved the macrocyclic polyamines

- (1) (a) Bosnich, B.; Poon, C. K.; Tobe, M. L. *Inorg. Chem.* 1965, 4, 1102.
(b) Endicott, J. F.; Lilie, J.; Kuszaj, J. M.; Ramaswamy, B. S.; Schmonsees, W. G.; Simic, M. G.; Glick, M. D.; Rillema, D. P. J. Am. Chem. Soc. N.; Luz, Z.; Meyerstein, D. *J. Chem.* **Soc.,** *Chem. Commun.* **1979,241.** (d) Zuckman, S. A.; Freeman, G. M.; Troutner, D. E.; Volkert, W. A.; Holmes, R. A.; Van Derveer, D. G.; Barefield, E. K. *Inorg. Chem.* 1981, 20, 2386. (e) Walker, D. D.; Taube, H. *Inorg. Chem.* 1981, 20, 2828. (f) Ito, T (9) Yamashita, **M.;** Ito, H.; Toriumi, K.; Ito, T. *Inorg. Chem.* **1983,22, 1566.** (h) Beley, M.; Collin, J.-P.; Ruppert, R.; Sauvage, J.-P. J. *Am. Chem.* **Soc. 1986,108,7461.** (i) Shionoya, M.; Kimura, E.; Iitaka, **Y.** J. *Am. Chem.* **Soc. 1990,112, 9237.**
- **(2)** Skibsted, L. H.; Bjerrum, J. *Aclu Chem. Scand.* **1974,** *A28,* **740.**
- **(3)** Baddley, W. H.; Basolo, F.; Gray, H. B.; Ndting, **C.;** Pk, A. J. *Inorg. Chem.* **1963,** 2,921.
- **(4)** Kim, J.-H.; Everett, G. W., Jr. *Inorg. Chem.* **1981, 853.**
- *(5)* Kimura, E.; Koike, T.; Takahashi, M. *J. Chem. Soc., Chem. Commun.* **1985, 385.**
-
- **(6)** Iitaka, Y.; Koike, T.; Kimura, E. *Inorg. Chem.* **1986, 25, 402. (7)** Kimura, E.; Yamaoka, **M.;** Morioka, M.; Koike, T. *Inorg. Chem.* **1986,** 25, 3883.
Kimura, E.; Koike, T.; Uenishi, K.; Davidson, R. B. J. Chem. Soc.,
- **(8)** Kimura, E.; Koike, T.; Uenishi, K.; Davidson, R. B. *J. Chem. Soc., Chem. Commun.* **1986,** 1110.
- **(9)** Kimura, **E.;** Uenishi, K.; Koike. T.; Iitaka, **Y.** *Chem. Lett.* **1986, 1137.**
- (10) Kimura, E.; Koike, T.; Uenishi, K.; Hediger, M.; Kuramoto, M.; Joko, S.; Arai, Y.; Kodama, M.; Iitaka, Y. *Inorg. Chem.* 1987, 26, 2975. (11) Kimura, E.; Kurosaki, H.; Koike, T.; Toriumi, K. J. *Inclusion Phenom.*, in
-
- **(12)** Kimura, E.; Koike, T.; Nada, **H.;** Iitaka, Y. J. *Chem.* **Soc.,** *Chem. Commun.* **1986, 1322.**
-
- **(13)** Kimura, E. Pure *Appl. Chem.* **1989,** *61,* **823. (14)** Kimura, E.; Kotake, **Y.;** Koike, T.; Shionoya, M.; Shiro, M. *Inorg. Chem.* **1990,29,4991.**
- **(15)** Machida, R.; Kimura, E.; Kodama, M. *Inorg. Chem.* **1983. 22, 2055.**

[†] Hiroshima University.
[†] Institute for Molecular Science.